Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49(03): 189-202
DOI: 10.1055/a-1482-7752
Übersichtsartikel

Zellbasierte Therapeutika zur Behandlung der Osteoarthritis beim Pferd

Grundlagenwissen für den PraktikerCell-based therapeutic strategies for osteoarthritis in equine patientsBasic knowledge for clinical practitioners
Susanne P. Roth
1   Klinik für Pferde, Veterinärmedizinische Fakultät, Universität Leipzig
2   Sächsischer Inkubator für Klinische Translation, Universität Leipzig
,
Walter Brehm
1   Klinik für Pferde, Veterinärmedizinische Fakultät, Universität Leipzig
2   Sächsischer Inkubator für Klinische Translation, Universität Leipzig
,
Antonia Troillet
1   Klinik für Pferde, Veterinärmedizinische Fakultät, Universität Leipzig
2   Sächsischer Inkubator für Klinische Translation, Universität Leipzig
› Author Affiliations

Zusammenfassung

In den letzten Jahren haben zellbasierte Therapeutika zur Behandlung von Osteoarthritiden in der Pferdemedizin einen regelrechten Boom erlebt. In der Praxis werden diese Therapeutika in Eigenverantwortung des Tierarztes aus Patientenblut oder anderen körpereigenen Geweben wie Fettgewebe oder Knochenmark hergestellt. Auch wenn diesen zellbasierten Therapiemethoden das einheitliche therapeutische Konzept der regenerativen Medizin gemein ist, unterscheiden sie sich maßgeblich hinsichtlich Herstellungsverfahren, Inhaltsstoffen und Funktionsweisen. Grundlegendes Wissen hierzu ermöglicht es dem praktizierenden Tierarzt, das für ihn und seine Pferdepatienten geeignete Produkt auszuwählen und bestmögliche Behandlungsstrategien zu erstellen.

Abstract

Cell-based therapies for the treatment of osteoarthritis in equine patients experienced a real boom within the last few years. In every day medical practice, attending veterinary surgeons extract patient’s blood or other autologous tissue samples and process the material for the purpose of administering the resulting product to the same patient under their own responsibility. Although being consistently classified as treatment option within the framework of regenerative medicine, the manufacturing processes, ingredients, and mechanisms of action remain highly diverse among cell-based therapies. Thus, sound knowledge about the latter ones forms the basis for therapeutic decision-making and best possible treatment regimes.



Publication History

Received: 21 November 2020

Accepted: 15 February 2021

Article published online:
22 June 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Ireland JL, Clegg PD, McGowan CM. et al. Disease prevalence in geriatric horses in the United Kingdom: Veterinary clinical assessment of 200 cases. Equine Vet J 2012; 44: 101-106
  • 2 Lane NE, Brandt K, Hawker G. et al. OARSI-FDA initiative: Defining the disease state of osteoarthritis. Osteoarthr Cartil 2011; 19: 478-482
  • 3 de Lange-Brokaar BJE, Ioan-Facsinay A, van Osch GJVM. et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: A review. Osteoarthr Cartil 2012; 20: 1484-1499
  • 4 Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil 2013; 21: 16-21
  • 5 Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 2010; 6: 625-635
  • 6 Bhattaram P, Chandrasekharan U. The joint synovium: A critical determinant of articular cartilage fate in inflammatory joint diseases. Semin Cell Dev Biol 2017; 62: 86-93
  • 7 Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Res Ther 2017; 19: 1-9
  • 8 Oo WM, Yu SPC, Daniel MS. et al. Disease-modifying drugs in osteoarthritis: Current understanding and future therapeutics. Expert Opin Emerg Drugs 2018; 23: 331-347
  • 9 Bannuru RR, Osani MC, Vaysbrot EE. et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr Cartil 2019; 27: 1578-1589
  • 10 Manferdini C, Maumus M, Gabusi E. et al. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum 2013; 65: 1271-1281
  • 11 van Buul GM, Villafuertes E, Bos PK. et al. Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthr Cartil 2012; 20: 1186-1196
  • 12 Murphy JM, Fink DJ, Hunziker EB. et al. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 2003; 48: 3464-3474
  • 13 Faltus T, Brehm W. Cell-based veterinary pharmaceuticals – Basic legal parameters set by the veterinary pharmaceutical law and the genetic engineering law of the European Union. Front Vet Sci 2016; 3: 1-10
  • 14 European Medicines Agency. HorStem: EPAR – Medicine overview (2019). Im Internet: https://www.ema.europa.eu/en/documents/overview/horstem-epar-medicine-overview_en.pdf (Stand: 31.01.2021)
  • 15 Marx RE. Platelet-rich plasma (PRP): What is PRP and what is not PRP?. Implant Dent 2001; 10: 225-228
  • 16 Weinberger T. Klinische Erfahrungen mit der Anwendung von ACS/ORTHOKIN/IRAP beim Pferd. Pferde Spiegel 2008; 11: 111-114
  • 17 Lasarzik J, Bondzio A, Rettig M. et al. Evaluation of two protocols using autologous conditioned serum for intra-articular therapy of equine osteoarthritis – A pilot study monitoring cytokines and cartilage-specific biomarkers. J Equine Vet Sci 2018; 60: 35-42.e2
  • 18 Anitua E, Zalduendo M, Troya M. et al. Leukocyte inclusion within a platelet rich plasma-derived fibrin scaffold stimulates a more pro-inflammatory environment and alters fibrin properties. PLoS One 2015; 10: 1-19
  • 19 Sundman EA, Cole BJ, Fortier LA. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med 2011; 39: 2135-2140
  • 20 Bertone AL, Ishihara A, Zekas LJ. et al. Evaluation of a single intra-articular injection of autologous protein solution for treatment of osteoarthritis in horses. Am J Vet Res 2014; 75: 141-151
  • 21 Castillo TN, Pouliot MA, Hyeon Joo Kim. et al. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med 2011; 39: 266-271
  • 22 Hessel LN, Bosch G, van Weeren PR. et al. Equine autologous platelet concentrates: A comparative study between different available systems. Equine Vet J 2015; 47: 319-325
  • 23 Castelijns G, Crawford A, Schaffer J. et al. Evaluation of a filter-prepared platelet concentrate for the treatment of suspensory branch injuries in horses. Vet Comp Orthop Traumatol 2011; 24: 363-369
  • 24 Textor JA, Tablin F. Intra-articular use of a platelet-rich product in normal horses: Clinical signs and cytologic responses. Vet Surg 2013; 42: 499-510
  • 25 Kissich C, Gottschalk J, Lochmann G. et al. Biochemische Eigenschaften des equinen autologous conditioned Plasma® (ACP). Pferdeheilk 2012; 28: 258-267
  • 26 Linardi RL, Dodson ME, Moss KL. et al. The effect of autologous protein solution on the inflammatory cascade in stimulated equine chondrocytes. Front Vet Sci 2019; 6: 1-9
  • 27 Frisbie DD, Kawcak CE, Werpy NM. et al. Clinical, biochemical, and histologic effects of intra-articular administration of autologous conditioned serum in horses with experimentally induced osteoarthritis. Am J Vet Res 2006; 68: 290-296
  • 28 Hraha TH, Doremus KM, Mcilwraith CW. et al. Autologous conditioned serum: The comparative cytokine profiles of two commercial methods (IRAP and IRAP II) using equine blood. Equine Vet J 2011; 43: 516-521
  • 29 De Schauwer C, Meyer E, Van de Walle GR. et al. Markers of stemness in equine mesenchymal stem cells: A plea for uniformity. Theriogenology 2011; 75: 1431-1443
  • 30 Burk J, Badylak SF, Kelly J. et al. Equine cellular therapy – from stall to bench to bedside?. Cytom Part A 2013; 83 A: 103-113
  • 31 Horwitz EM, Le Blanc K, Dominici M. et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7: 393-395
  • 32 Koch TG, Berg LC, Betts DH. Current and future regenerative medicine – principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Can Vet J 2009; 50: 155-165
  • 33 Barberini DJ, Freitas NPP, Magnoni MS. et al. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: Immunophenotypic characterization and differentiation potential. Stem Cell Res Ther 2014; 5: 1-11
  • 34 Burk J, Ribitsch I, Gittel C. et al. Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources. Vet J 2013; 195: 98-106
  • 35 Dominici M, Le Blanc K, Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317
  • 36 Murray IR, West CC, Hardy WR. et al. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 2014; 71: 1353-1374
  • 37 Watt FM, Hogan BLM. Out of eden: Stem cells and their niches. Science 2000; 287: 1427-1430
  • 38 Tintut Y, Alfonso Z, Saini T. et al. Multilineage potential of cells from the artery wall. Circulation 2003; 108: 2505-2510
  • 39 Crisan M, Yap S, Casteilla L. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3: 301-313
  • 40 Hoshino A, Chiba H, Nagai K. et al. Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochem Biophys Res Commun 2008; 368: 305-310
  • 41 Crisan M, Chen CW, Corselli M. et al. Perivascular multipotent progenitor cells in human organs. Ann N Y Acad Sci 2009; 1176: 118-123
  • 42 Esteves CL, Sheldrake TA, Mesquita SP. et al. Isolation and characterization of equine native MSC populations. Stem Cell Res Ther 2017; 8: 1-12
  • 43 Kasashima Y, Ueno T, Tomita A. et al. Optimisation of bone marrow aspiration from the equine sternum for the safe recovery of mesenchymal stem cells. Equine Vet J 2011; 43: 288-294
  • 44 Delling U, Lindner K, Ribitsch I. et al. Comparison of bone marrow aspiration at the sternum and the tuber coxae in middle-aged horses. Can J Vet Res 2012; 76: 52-56
  • 45 Bogers SH. Cell-based therapies for joint disease in veterinary medicine: What we have learned and what we need to know. Front Vet Sci 2018; 5: 1-17
  • 46 Brehm W, Burk J, Delling U. Application of stem cells for the treatment of joint disease in horses. In: Walker JM, Christ B, Oerlecke J. et al., eds. Springer Protocols Methods in molecular biology Animal models for stem cell therapy. 1st ed.. New York, Heidelberg, Dordrecht, London: Springer; 2014: 215-228
  • 47 Lawver J, Thaler R. Ultrasound-guided lipoaspiration for mesenchymal stromal cell harvest in the horse. Equine Vet Educ 2016; 28: 23-29
  • 48 Arnhold S, Elashry MI, Klymiuk MC. et al. Investigation of stemness and multipotency of equine adipose-derived mesenchymal stem cells (ASCs) from different fat sources in comparison with lipoma. Stem Cell Res Ther 2019; 10: 1-20
  • 49 Bruno I, Martinez R, Sanchez A. et al. Characterization of nucleated cells from equine adipose tissue and bone marrow aspirate processed for point-of-care use. J Equine Vet Sci 2014; 34: 1118-1127
  • 50 Mundy LN, Ishihara A, Wellman ML. et al. System to enhance recovery of equine bone marrow elements. Am J Vet Res 2015; 76: 561-569
  • 51 Marx C, Silveira MD, Beyer Nardi N. Adipose-derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev 2015; 24: 803-813
  • 52 Frisbie DD, Kisiday JD, Kawcak CE. et al. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res 2009; 27: 1675-1680
  • 53 Chu CR, Fortier LA, Williams A. et al. Minimally manipulated bone marrow concentrate compared with microfracture treatment of full-thickness chondral defects: A one-year study in an equine model. J Bone Jt Surg Am 2018; 100: 138-146
  • 54 Cassano JM, Kennedy JG, Ross KA. et al. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc 2018; 26: 333-342
  • 55 Zeira O, Scaccia S, Pettinari L. et al. Intra-articular administration of autologous micro-fragmented adipose tissue in dogs with spontaneous osteoarthritis: Safety, feasibility, and clinical outcomes. Stem Cells Transl Med 2018; 7: 819-828
  • 56 Pavarotti GS, Hivernaud V, Brincin M. et al. Evaluation of a single intra-articular injection of autologous adipose tissue for the treatment of osteoarthritis: A prospective clinical study in dogs. Vet Comp Orthop Traumatol 2020; 33: 258-266 doi: /s-0040–1708524
  • 57 Espina M, Jülke H, Brehm W. et al. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses. PeerJ 2016; 2016: 1-23
  • 58 European Medicines Agency. HorStem: EPAR – public assessment report (2019). Im Internet: https://www.ema.europa.eu/en/documents/assessment-report/horstem-epar-public-assessment-report_en.pdf (Stand: 31.01.2021)
  • 59 De Bari C, Roelofs AJ. Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol 2018; 40: 74-80
  • 60 Lopa S, Colombini A, Moretti M. et al. Injective mesenchymal stem cell-based treatments for knee osteoarthritis: From mechanisms of action to current clinical evidences. Knee Surg Sports Traumatol Arthrosc 2019; 27: 2003-2020
  • 61 Whitworth DJ, Banks TA. Stem cell therapies for treating osteoarthritis: Prescient or premature?. Vet J 2014; 202: 416-424
  • 62 Bogers SH. Turning round: Optimizing the anti-inflammatory properties of equine bone marrow derived mesenchymal stem cells for osteoarthritis through three-dimensional culture [Dissertation]. Blacksburg, Virginia: Faculty of the Virginia Polytechnic Institute and State University; 2017
  • 63 Mancuso P, Raman S, Glynn A. et al. Mesenchymal stem cell therapy for osteoarthritis: The critical role of the cell secretome. Front Bioeng Biotechnol 2019; 7: 1-9
  • 64 Caplan AI. Mesenchymal stem cells: Time to change the name!. Stem Cells Transl Med 2017; 6: 1445-1451
  • 65 Broeckx S, Zimmerman M, Crocetti S. et al. Regenerative therapies for equine degenerative joint disease: A preliminary study. PLoS One 2014; 9: 1-11
  • 66 Spaas JH, Broeckx SY, Chiers K. et al. Chondrogenic priming at reduced cell density enhances cartilage adhesion of equine allogeneic mscs – a loading sensitive phenomenon in an organ culture study with 180 explants. Cell Physiol Biochem 2015; 37: 651-665
  • 67 Muñoz AP. Efficacy and safety study of allogeneic equine umbilical cord derived mesenchymal stem cells (EUC-MSCs) for the treatment of clinical symptomatology associated with mild to moderate degenerative joint disease (osteoarthritis) in horses under field conditions [Dissertation]. Madrid: Departamento de Farmacología y Terapéutica. Facultad de Medicina. Universidad Autónoma de Madrid; 2019
  • 68 Wilke MM, Nydam DV, Nixon AJ. Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res 2007; 25: 913-925
  • 69 Ortved KF, Nixon AJ. Cell-based cartilage repair strategies in the horse. Vet J 2016; 208: 1-12
  • 70 Ferris DJ, Frisbie DD, Acvs D. et al. Clinical outcome after intra-articular administration of bone marrow derived mesenchymal stem cells in 33 horses with stifle injury. Vet Surg 2014; 43: 255-265
  • 71 Ferris D, Frisbie D, Kisiday J. et al. In vivo healing of meniscal lacerations using bone marrow-derived mesenchymal stem cells and fibrin glue. Stem Cells Int. 2012 2012.
  • 72 González-Fernández ML, Pérez-Castrillo S, Sánchez-Lázaro JA. et al. Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Am J Vet Res 2016; 77: 779-788
  • 73 Kremer A, Ribitsch I, Reboredo J. et al. Three-dimensional coculture of meniscal cells and mesenchymal stem cells in collagen type I hydrogel on a small intestinal matrix – A pilot study toward equine meniscus tissue engineering. Tissue Eng Part A 2017; 23: 390-402
  • 74 Yu H, Adesida AB, Jomha NM. Meniscus repair using mesenchymal stem cells – A comprehensive review. Stem Cell Res Ther 2015; 6: 1-10
  • 75 Hubka KM, Dahlin RL, Meretoja VV. et al. Enhancing chondrogenic phenotype for cartilage tissue engineering: Monoculture and coculture of articular chondrocytes and mesenchymal stem cells. Tissue Eng Part B Rev 2014; 20: 641-654
  • 76 Brossi PM, Moreira JJ, Machado TSL. et al. Platelet-rich plasma in orthopedic therapy: A comparative systematic review of clinical and experimental data in equine and human musculoskeletal lesions. BMC Vet Res 2015; 11: 1-17
  • 77 Garbin LC, Olver CS. Platelet-rich products and their application to osteoarthritis. J Equine Vet Sci 2020; 86: 102820
  • 78 Machado TSL, Massoco CO, Silva LCLC. et al. Effects of blood-derived products and sodium hyaluronate on equine synovial fluid cells and on synovial fluid from osteochondrotic joints of horses after arthroscopy and administration of treatment. Am J Vet Res 2019; 80: 646-656
  • 79 Textor JA. Autologous biologic treatment for equine musculoskeletal injuries: platelet-rich plasma and IL-1 receptor antagonist protein. Vet Clin North Am Equine Pract 2011; 27: 275-298
  • 80 Moraes APL, Moreira JJ, Brossi PM. et al. Short- and long-term effects of platelet-rich plasma upon healthy equine joints: Clinical and laboratory aspects. Can Vet J 2015; 56: 831-838
  • 81 Textor JA, Tablin F. Activation of equine platelet-rich plasma: Comparison of methods and characterization of equine autologous thrombin. Vet Surg 2012; 41: 784-794
  • 82 Textor JA, Willits NH, Tablin F. Synovial fluid growth factor and cytokine concentrations after intra-articular injection of a platelet-rich product in horses. Vet J 2013; 198: 217-223
  • 83 Warner K, Lischer CJ. Komplikationen nach intraartikularer Anwendung von ACS (I RAP®) beim Pferd – Retrospektive Studie. Pferdeheilk 2017; 33: 356-362
  • 84 Jostingmeier U, Reinecke J, Hertsch B. Comparison of intraarticular injection of autologous conditioned serum (ACS, irap) vs sodium hyaluronate and corticosteroid in front limb coffin joint lameness. Aust Equine Vet 2010; 29: 75
  • 85 Tyrnenopoulou P, Diakakis N, Karayannopoulou M. et al. Evaluation of intra-articular injection of autologous platelet lysate (PL) in horses with osteoarthritis of the distal interphalangeal joint. Vet Q 2016; 36: 56-62
  • 86 Ionita JC, Kissich C, Gottschalk J. et al. Comparison of cellular and growth factor concentrations in equine Autologous Conditioned Plasma® (ACP) and manually prepared Platelet Rich Plasma (mPRP). Pferdeheilk 2014; 30: 195-206
  • 87 Zayed M, Adair S, Ursini T. et al. Concepts and challenges in the use of mesenchymal stem cells as a treatment for cartilage damage in the horse. Res Vet Sci 2018; 118: 317-323
  • 88 Carrade DD, Owens SD, Galuppo LD. et al. Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses. Cytotherapy 2011; 13: 419-430
  • 89 Broeckx SY, Suls M, Beerts C. et al. Allogenic mesenchymal stem cells as a treatment for equine degenerative joint disease: A pilot study. Curr Stem Cell Res Ther 2014; 9: 497-503
  • 90 Schnabel LV, Pezzanite LM, Antczak DF. et al. Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro. Stem Cell Res Ther 2014; 5: 1-13
  • 91 Pezzanite LM, Fortier LA, Antczak DF. et al. Equine allogeneic bone marrow-derived mesenchymal stromal cells elicit antibody responses in vivo. Stem Cell Res Ther 2015; 6: 1-11
  • 92 Colbath AC, Dow SW, Phillips JN. et al. Autologous and allogeneic equine mesenchymal stem cells exhibit equivalent immunomodulatory properties in vitro. Stem Cells Dev 2017; 26: 503-511
  • 93 Hill JA, Cassano JM, Goodale MB. et al. Antigenicity of mesenchymal stem cells in an inflamed joint environment. Am J Vet Res 2017; 78: 867-875
  • 94 Owens SD, Kol A, Walker NJ. et al. Allogeneic mesenchymal stem cell treatment induces specific alloantibodies in horses. Stem Cells Int 2016; 2016: 5830103
  • 95 Pigott JH, Ishihara A, Wellman ML. et al. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Immunol Immunopathol 2013; 156: 99-106
  • 96 Bertoni L, Branly T, Jacquet S. et al. Intra-articular injection of 2 different dosages of autologous and allogeneic bone marrow- and umbilical cord-derived mesenchymal stem cells triggers a variable inflammatory response of the fetlock joint on 12 sound experimental horses. Stem Cells Int. 2019 2019.
  • 97 Broeckx SY, Spaas JH, Chiers K. et al. Equine allogeneic chondrogenic induced mesenchymal stem cells: A GCP target animal safety and biodistribution study. Res Vet Sci 2018; 117: 246-254
  • 98 Broeckx SY, Martens AM, Bertone AL. et al. The use of equine chondrogenic-induced mesenchymal stem cells as a treatment for osteoarthritis: A randomised, double-blinded, placebo-controlled proof-of-concept study. Equine Vet J 2019; 51: 787-794
  • 99 Broeckx SY, Seys B, Suls M. et al. Equine allogeneic chondrogenic induced mesenchymal stem cells are an effective treatment for degenerative joint disease in horses. Stem Cells Dev 2019; 28: 410-422
  • 100 Müller M, Raabe O, Addicks K. et al. Effects of non-steroidal anti-inflammatory drugs on proliferation, differentiation and migration in equine mesenchymal stem cells. Cell Biol Int 2011; 35: 235-248
  • 101 Almaawi A, Wang HT, Ciobanu O. et al. Effect of acetaminophen and nonsteroidal anti-inflammatory drugs on gene expression of mesenchymal stem cells. Tissue Eng Part A 2013; 19: 1039-1046
  • 102 Joswig AJ, Mitchell A, Cummings KJ. et al. Repeated intra-articular injection of allogeneic mesenchymal stem cells causes an adverse response compared to autologous cells in the equine model. Stem Cell Res Ther 2017; 8: 42
  • 103 Iwanaga T, Shikichi M, Kitamura H. et al. Morphology and functional roles of synoviocytes in the joint. Arch Histol Cytol 2000; 63: 17-31
  • 104 Murray IR, Chahla J, Safran MR. et al. International expert consensus on a cell therapy communication tool: DOSES. J Bone Jt Surg Am 2019; 101: 904-911