Subscribe to RSS
DOI: 10.1055/a-1472-6730
7 Tesla Chlorine (35Cl) and Sodium (23Na) MR Imaging of an Enchondroma
7 Tesla Chlor (35Cl) und Natrium (23Na) MR-Bildgebung eines Enchondroms
Abstract
We demonstrated the feasibility of 7 Tesla sodium (23Na) and chlorine (35Cl) MRI of a solitary enchondroma. For this, we established dedicated sequences on a 7-Tesla whole-body system with the following key parameters for 35Cl MRI: TE/TR = 0.35/60 ms, TRO = 5 ms, α = 90°, Δx3 = (6 mm)3, 3 averages, Tacq = 30 min and for 23Na MRI: TE/TR = 0.4/101 ms, TRO = 10ms; α = 90°; Δx3 = (1.9 mm)3, 3 averages, Tacq = 30 min 18 s. The measured apparent Na+ concentration was 255 mmol/l and was approximately 7-fold higher than the apparent Cl– concentration with about 36 mmol/l. Additionally, repeated proton MRI examinations demonstrated constant but subtle growth (≈ 0.65 ml/year) over 14 years. In conclusion, enchondromas obviously have a high contrast-to-noise ratio when compared with the normal bone marrow in 23Na and 35Cl MRI, which may contribute to detection and differentiation in unclear or subtle cases.
Key Points:
-
High magnetic field strengths (e. g., 7 Tesla) enable sodium (23Na) and chlorine (35Cl) MRI of solitary cartilage-forming tumors like enchondromas with nominal spatial resolutions of (1.9 mm)3 (23Na MRI) and (6 mm)3 (35Cl MRI).
-
Measured median tumoral apparent Na+ and Cl- concentrations were nearly 13 times higher and 3 times higher than in normal muscle tissue, respectively.
-
Enchondromas have a high contrast-to-noise-ratio when compared with the normal bone marrow in 23Na and 35Cl MRI, which may contribute to detection and differentiation in unclear or subtle cases.
Citation Format
-
Weber M, Seyler L, Nagel AM. 7 Tesla Chlorine (35Cl) and Sodium (23Na) MR Imaging of an Enchondroma. Fortschr Röntgenstr 2021; 193: 1207 – 1211
Zusammenfassung
Wir zeigen die Machbarkeit der 7-Tesla Natrium (23Na–) und Chlor (35Cl)-MRT eines solitären Enchondroms. Zu diesem Zweck haben wir spezielle Sequenzen auf einem 7-Tesla-Ganzkörpersystem mit den folgenden Parametern etabliert: für die 35Cl-MRT TE/TR = 0,35/60 ms, TRO = 5 ms, α = 90°, Δx3 = (6 mm)3, 3 Mittelungen, Tacq = 30 min und für 23Na-MRT TE/TR = 0,4/101 ms, TRO = 10 ms; α = 90°; Δx3 = (1,9 mm)3, 3 Mittelungen, Tacq = 30 min 18 s. Die gemessene scheinbare Na+-Konzentration betrug 255 mmol/l und war etwa 7-fach höher als die scheinbare Cl–-Konzentration mit etwa 36 mmol/l. Darüber hinaus zeigten wiederholte Protonen-MRT-Untersuchungen über 14 Jahre ein konstantes, geringes Wachstum (≈ 0,65 ml/Jahr). Zusammenfassend lässt sich sagen, dass Enchondrome im Vergleich zum normalen Knochenmark in der 23Na- und 35Cl-MRT offensichtlich ein hohes Kontrast-Rausch-Verhältnis aufweisen, was in unklaren oder subtilen Fällen zur Erkennung und Differenzierung beitragen kann.
Kernaussagen:
-
Hohe Magnetfeldstärken (z. B. 7 Tesla) ermöglichen Natrium (23Na) und Chlor (35Cl) MRT von solitären knorpelbildenden Tumoren wie Enchondromen mit nominellen räumlichen Auflösungen von (1,9 mm)3 (23Na-MRT) und (6 mm)3 (35Cl-MRT).
-
Die medianen scheinbaren Konzentrationen von Na+ und Cl– in einemsolitären Enchondrom waren fast 13-fach bzw. 3-fach höher als in normalem Muskelgewebe.
-
Enchondrome weisen im Vergleich zum normalen Knochenmark bei 23Na- und 35Cl-MRT ein hohes Kontrast-Rausch-Verhältnis auf, das in unklaren oder subtilen Fällen zur besseren Erkennung und Differenzierung beitragen kann.
Publication History
Article published online:
12 August 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Niesporek SC, Nagel AM, Platt T. Multinuclear MRI at ultrahigh fields. Top Magn Reson Imaging 2019; 28: 173-188
- 2 Nagel AM, Lehmann-Horn F, Weber MA. et al. In vivo 35Cl MR imaging in humans: a feasibility study. Radiology 2014; 271: 585-595
- 3 Weber MA, Nagel AM, Marschar AM. et al. 7-T 35Cl and 23Na MR imaging for detection of mutation-dependent alterations in muscular edema and fat fraction with sodium and chloride concentrations in muscular periodic paralyses. Radiology 2016; 280: 848-859
- 4 Shapiro EM, Borthakur A, Gougoutas A. et al. 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med 2002; 47: 284-291
- 5 Afonso PD, Isaac A, Villagran JM. Chondroid tumors as incidental findings and differential diagnosis between enchondromas and low-grade chondrosarcomas. Semin Musculoskelet Radiol 2019; 23: 3-18
- 6 Jurik AG, Hansen BH, Weber K. Solitary enchondromas-diagnosis and surveillance: Danish guidelines. Radiologe 2020; 60 (Suppl. 01) 26-32
- 7 Altay M, Bayrakci K, Yildiz Y. et al. Secondary chondrosarcoma in cartilage bone tumors: report of 32 patients. J Orthop Sci 2007; 12: 415-423
- 8 De Coninck T, Jans L, Sys G. et al. Dynamic contrast-enhanced MR imaging for differentiation between enchondroma and chondrosarcoma. Eur Radiol 2013; 23: 3140-3152
- 9 Lisson CS, Lisson CG, Flosdorf K. et al. Diagnostic value of MRI-based 3D texture analysis for tissue characterisation and discrimination of low-grade chondrosarcoma from enchondroma: a pilot study. Eur Radiol 2018; 28: 468-477
- 10 Nagel AM, Bock M, Hartmann C. et al. The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 2011; 46: 539-547
- 11 Cuddapah VA, Sontheimer H. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol 2011; 301: C541-C549
- 12 Nagel AM, Laun FB, Weber MA. et al. Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 2009; 62: 1565-1573
- 13 Wolf I, Vetter M, Wegner I. et al. The medical imaging interaction toolkit. Med Image Anal 2005; 9: 594-604
- 14 Kindblom LG, Angervall L. Histochemical characterization of mucosubstances in bone and soft tissue-tumors. Cancer 1975; 36: 985-994
- 15 Schmidt RF, Lang F, Heckmann M. (eds.) Physiologie des Menschen. 31. Auflage. Berlin Heidelberg: Springer; 2011
- 16 Madelin G, Lee JS, Regatte RR. et al. Sodium MRI: methods and applications. Prog Nucl Magn Reson Spectrosc 2014; 79: 14-47
- 17 Winters RW, Whitlock RT, Dewalt JL. et al. Effect of alterations of the sodium concentration of the serum upon the content of sodium in bone. Am J Physiol 1958; 195: 697-701
- 18 Gerhalter T, Gast LV, Marty B. et al. Assessing the variability of 23Na MRI in skeletal muscle tissue: Reproducibility and repeatability of tissue sodium concentration measurements in the lower leg at 3 T. NMR Biomed 2020; 33: e4279