Planta Med 2021; 87(12/13): 1061-1068
DOI: 10.1055/a-1470-0446
Natural Product Chemistry and Analytical Studies
Original Papers

13C NMR Dereplication Using MixONat Software: A Practical Guide to Decipher Natural Products Mixtures[ # ]

Antoine Bruguière
1   Univ Angers, SONAS, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, Angers, France
Séverine Derbré
1   Univ Angers, SONAS, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, Angers, France
Dimitri Bréard
1   Univ Angers, SONAS, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, Angers, France
Félix Tomi
2   Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Ajaccio, France
Jean-Marc Nuzillard
3   Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, Reims, France
Pascal Richomme
1   Univ Angers, SONAS, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, Angers, France
› Author Affiliations


The growing use of herbal medicines worldwide requires ensuring their quality, safety, and efficiency to consumers and patients. Quality controls of vegetal extracts are usually undertaken according to pharmacopeial monographs. Analyses may range from simple chemical experiments to more sophisticated but more accurate methods. Nowadays, metabolomic analyses allow a fast characterization of complex mixtures. In the field, besides mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR) has gained importance in the direct identification of natural products in complex herbal extracts. For a decade, automated dereplication processes based on 13C-NMR have been emerging to efficiently identify known major compounds in mixtures. Though less sensitive than MS, 13C-NMR has the advantage of being appropriate to discriminate stereoisomers. Since NMR spectrometers nowadays provide useful datasets in a reasonable time frame, we have recently made available MixONat, a software that processes 13C as well as distortionless enhancement by polarization transfer (DEPT)-135 and -90 data, allowing carbon multiplicity (i.e., CH3, CH2, CH, and C) filtering as a critical step. MixONat requires experimental or predicted chemical shifts (δ C) databases and displays interactive results that can be refined based on the userʼs phytochemical knowledge. The present article provides step-by-step instructions to use MixONat starting from database creation with freely available and/or marketed δ C datasets. Then, for training purposes, the reader is led through a 30 – 60 min procedure consisting of the 13C-NMR based dereplication of a peppermint essential oil.

# Dedicated to Professor Arnold Vlietinck on the occasion of his 80th birthday.

Supporting Information

Publication History

Received: 29 January 2021

Accepted after revision: 25 March 2021

Article published online:
06 May 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Tilburt JC, Kaptchuk TJ. Herbal medicine research and global health: an ethical analysis. Bull World Health Organ 2008; 86: 577-656
  • 2 Eisenberg DM, Davis RB, Ettner SL, Appel S, Wilkey S, Van Rompay M, Kessler RC. Trends in alternative medicine use in the United States, 1990–1997. Results of a follow-up national survey. JAMA 1998; 280: 1569-1575
  • 3 Welz AN, Emberger-Klein A, Menrad K. The importance of herbal medicine use in the German health-care system: prevalence, usage pattern, and influencing factors. BMC Health Serv Res 2019; 19: 952
  • 4 Bruneton J. Pharmacognosy: Phytochemistry, medicinal Plants. 2nd ed.. ed. Londres: Tec & Doc Lavoisier; 2008
  • 5 World Health Organization. Quality Control Methods for herbal Materials. Geneva: World Health Organization; 2011
  • 6 Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Boya PCA, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, OʼNeill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard PM, Phapale P, Nothias LF, Alexandrov T, Litaudon M, Wolfender JL, Kyle JE, Metz TO, Peryea T, Nguyen DT, VanLeer D, Shinn P, Jadhav A, Müller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BØ, Pogliano K, Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 2016; 34: 828
  • 7 Mimica-Dukić N, Božin B, Soković M, Mihajlović B, Matavulj M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med 2003; 69: 413-419
  • 8 Bakiri A, Hubert J, Reynaud R, Lanthony S, Harakat D, Renault JH, Nuzillard JM. Computer-aided 13C NMR chemical profiling of crude natural extracts without fractionation. J Nat Prod 2017; 80: 1387-1396
  • 9 Hubert J, Nuzillard JM, Purson S, Hamzaoui M, Borie N, Reynaud R, Renault JH. Identification of natural metabolites in mixture: a pattern recognition strategy based on 13C NMR. Anal Chem 2014; 86: 2955-2962
  • 10 Bruguière A, Derbré S, Coste C, Le Bot M, Siegler B, Leong ST, Sulaiman SN, Awang K, Richomme P. 13C-NMR dereplication of Garcinia extracts: predicted chemical shifts as reliable databases. Fitoterapia 2018; 131: 59-64
  • 11 Bruguière A, Derbré S, Dietsch J, Leguy J, Rahier V, Pottier Q, Bréard D, Suor-Cherer S, Viault G, Le Ray AM, Saubion F, Richomme P. MixONat, a software for mixtures dereplication based on 13C NMR experiments. Anal Chem 2020; 92: 8793-8801
  • 12 ACD Labs. NMR Spectroscopy Software. Accessed March 15, 2019 at:
  • 13 Robien W. CSEARCH Spectral Similarity Search with Ranking. Accessed March 11, 2021 at:
  • 14 Bruguière A, Derbré S. MixONat. 13C-NMR based dereplication software. Accessed November 18, 2020 at:
  • 15 Council of Europe, European Directorate for the Quality of Medicines and Healthcare. European Pharmacopoeia. 10th ed. Strasbourg: Council of Europe; 2019
  • 16 Xu T, Gherib M, Bekhechi C, Atik-Bekkara F, Casabianca H, Tomi F, Casanova J, Bighelli A. Thymyl esters derivatives and a new natural product modhephanone from Pulicaria mauritanica Coss. (Asteraceae) root oil. Flavour Fragr J 2015; 30: 83-90
  • 17 Ouattara ZA, Boti JB, Ahibo AC, Sutour S, Casanova J, Tomi F, Bighelli A. The key role of 13C NMR analysis in the identification of individual components of Polyalthia longifolia leaf oil. Flavour Fragr J 2014; 29: 371-379
  • 18 Baldovini N, Tomi F, Casanova J. Identification and quantitative determination of furanodiene, a heat-sensitive compound, in essential oil by 13C-NMR. Phytochem Anal 2001; 12: 58-63
  • 19 Zavahir JS, Smith JSP, Blundell S, Waktola HD, Nolvachai Y, Wood BR, Marriott PJ. Relationships in gas chromatography-Fourier transform infrared spectroscopy. Comprehensive and multilinear analysis. Separations 2020; 7: 27
  • 20 ChemNetBase. Dictionary of Natural Products 29.1. Accessed November 18, 2020 at:
  • 21 Pupier M, Nuzillard JM, Wist J, Schlörer NE, Kuhn S, Erdelyi M, Steinbeck C, Williams AJ, Butts C, Claridge TDW, Mikhova B, Robien W, Dashti H, Eghbalnia HR, Farès C, Adam C, Kessler P, Moriaud F, Elyashberg M, Argyropoulos D, Pérez M, Giraudeau P, Gil RR, Trevorrow P, Jeannerat D. NMReDATA, a standard to report the NMR assignment and parameters of organic compounds. Magn Reson Chem 2018; 56: 703-715
  • 22 Tomi F, Bradesi P, Bighelli A, Casanova J. Computer aided identification of individual components of essential oils using carbon 13 NMR spectroscopy. Journal of Magnetic Resonance Analysis 1995; 1: 25-34
  • 23 Lanfranchi DA, Blanc MC, Vellutini M, Bradesi P, Casanova J, Tomi F. Enantiomeric differentiation of oxygenated p-menthane derivatives by 13C NMR using Yb(hfc)3. Magn Reson Chem 2008; 46: 1188-1194
  • 24 KNApSAcK. KNApSAcK core System. Accessed November 18, 2020 at:
  • 25 ChemAxon. Marvin. MarvinView–View your molecules. Accessed March 15, 2019 at:
  • 26 Ho D. Notepad++. What is Notepad++. Accessed March 15, 2019 at:
  • 27 Rutz A, Dounoue-Kubo M, Ollivier S, Bisson J, Bagheri M, Saesong T, Ebrahimi SN, Ingkaninan K, Wolfender JL, Allard PM. Taxonomically informed scoring enhances confidence in natural products annotation. Front Plant Sci 2019; 10: 1-15
  • 28 CAS. SciFinder. Accessed March 15, 2019 at:
  • 29 Elsevier. Reaxys. Accessed November 18, 2020 at:
  • 30 Nuzillard JM. KnapsackSearch. Automated data search in the KNApSAcK database. Accessed June 22, 2020 at:
  • 31 Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S. KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 2011; 53: e1
  • 32 Kuhn S. NMRShiftDB2. Accessed November 18, 2020 at:
  • 33 Kuhn S, Schlörer NE. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2–a free in-house NMR database with integrated LIMS for academic service laboratories. Magn Reson Chem 2015; 53: 582-589
  • 34 Dona AC, Kyriakides M, Scott F, Shephard EA, Varshavi D, Veselkov K, Everett JR. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol J 2016; 14: 135-153
  • 35 John Wiley & Sons Inc.. SpectraBase. Accessed January 11, 2021 at:
  • 36 Gottlieb HE, Kotlyar V, Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 1997; 62: 7512-7515
  • 37 Gu J, Gui Y, Chen L, Yuan G, Lu HZ, Xu X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One 2013; 8: e62839
  • 38 LOTUS. The naturaL prOducTs occUrrences databaSe. Accessed March 8, 2021 at:
  • 39 Rutz A, Sorokina M, Galgonek J, Mietchen D, Willighagen E, Graham J, Stephan R, Page R, Vondrášek J, Steinbeck C, Pauli GF, Wolfender JL, Bisson J, Allard PM. Open natural products research: curation and dissemination of biological occurrences of chemical structures through wikidata. bioRxiv 2021; DOI: 10.1101/2021.02.28.433265.
  • 40 Landrum G. An overview of the RDKit. Accessed November 18, 2020 at:
  • 41 Lianza M, Leroy R, Machado Rodrigues C, Borie N, Sayagh C, Remy S, Kuhn S, Renault JH, Nuzillard JM. The three pillars of natural product dereplication. Alkaloids from the bulbs of Urceolina peruviana (C. Presl) J.F. Macbr. as a preliminary test case. Molecules 2021; 26: 637
  • 42 Nuzillard JM, Leroy R, Kuhn S. Predicted carbon-13 NMR data of natural products (PNMRNP). Accessed January 13, 2021 at: