Drug Res (Stuttg) 2021; 71(06): 341-347
DOI: 10.1055/a-1422-1885
Original Article

vHTS and 3D-QSAR for the Identification of Novel Phyto-inhibitors of Farnesyltransferase: Validation of Ascorbic Acid inhibition of Farnesyltransferase in an Animal Model of Breast Cancer

Damilohun Samuel Metibemu
Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
› Author Affiliations

Abstract

Farnesyltransferase (FTase) is a zinc enzyme that has been the subject of attention in anti-cancer research over the past. In this study, phytochemicals from Curcuma longa L., Taraxacum officinale, and Spondias mombin plants were screened for their inhibitory potentials on the human farnesyltransferase. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model for the inhibition of farnesyltransferase was generated and the inhibition of farnesyltransferase by the hit, ascorbic acid was validated in an animal model of breast cancer. The lead compound, ascorbic acid makes extensive hydrogen bond interactions with key residues, lys-353, tyr-300, gly-290, leu-290 within the active site of farnesyltransferase. It downregulated the expression of FNTA mRNA in an animal model of breast cancer. The 3D-QSAR generated herein is robust, thoroughly validated, and should be employed in the pipelining of novel farnesyltransferase inhibitors. Ascorbic acid demonstrates its anticancer potentials through the inhibition of farnesyltransferase.

Supplementary Material



Publication History

Received: 12 January 2021

Accepted: 08 March 2021

Publication Date:
16 April 2021 (online)

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany