Hamostaseologie 2021; 41(02): 146-153
DOI: 10.1055/a-1401-2706
Review Article

Procoagulant Platelets: Mechanisms of Generation and Action

N.A. Podoplelova
1   Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
2   National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia
,
D.Y. Nechipurenko
1   Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
2   National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia
3   Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
,
A.A. Ignatova
1   Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
2   National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia
,
A.N. Sveshnikova
1   Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
2   National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia
3   Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
,
M.A. Panteleev
1   Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
2   National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia
3   Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
› Institutsangaben
Funding The authors were supported by the Russian Science Foundation grant 20-74-00133.

Abstract

During the past decades, it has been increasingly recognized that the major function of accelerating membrane-dependent reactions of blood coagulation is predominantly implemented by a subset of activated platelets. These procoagulant platelets (also called collagen- and thrombin-activated or COAT, coated, necrotic, although there could be subtle differences between these definitions) are uniquely characterized by both procoagulant activity and, at the same time, inactivated integrins and profibrinolytic properties. The mechanisms of their generation both in vitro and in situ have been increasingly becoming clear, suggesting unique and multidirectional roles in hemostasis and thrombosis. In this mini-review, we shall highlight the existing concepts and challenges in this field.



Publikationsverlauf

Eingereicht: 15. Dezember 2020

Angenommen: 25. Februar 2021

Artikel online veröffentlicht:
15. April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Heemskerk JWM, Mattheij NJA, Cosemans JMEM. Platelet-based coagulation: different populations, different functions. J Thromb Haemost 2013; 11 (01) 2-16
  • 2 Ahmad SS, London FS, Walsh PN. The assembly of the factor X-activating complex on activated human platelets. J Thromb Haemost 2003; 1 (01) 48-59
  • 3 Dachary-Prigent J, Freyssinet JM, Pasquet JM, Carron JC, Nurden AT. Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups. Blood 1993; 81 (10) 2554-2565
  • 4 Alberio L, Safa O, Clemetson KJ, Esmon CT, Dale GL. Surface expression and functional characterization of alpha-granule factor V in human platelets: effects of ionophore A23187, thrombin, collagen, and convulxin. Blood 2000; 95 (05) 1694-1702
  • 5 Dale GL, Friese P, Batar P. et al. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature 2002; 415 (6868): 175-179
  • 6 Agbani EO, Poole AW. Procoagulant platelets: generation, function, and therapeutic targeting in thrombosis. Blood 2017; 130 (20) 2171-2179
  • 7 Reddy EC, Rand ML. Procoagulant phosphatidylserine-exposing platelets in vitro and in vivo . Front Cardiovasc Med 2020; 7: 15
  • 8 van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol 2019; 16 (03) 166-179
  • 9 Tohidi-Esfahani I, Lee CSM, Liang HPH, Chen VMY. Procoagulant platelets: laboratory detection and clinical significance. Int J Lab Hematol 2020; 42 (Suppl. 01) 59-67
  • 10 Baaten CCFMJ, Ten Cate H, van der Meijden PEJ, Heemskerk JWM. Platelet populations and priming in hematological diseases. Blood Rev 2017; 31 (06) 389-399
  • 11 Dale GL. Procoagulant platelets: further details but many more questions. [Internet] Arterioscler Thromb Vasc Biol 2017; 37 (09) 1596-1597
  • 12 Webber AJ, Firkin BG. Two populations of platelets. Nature 1965; 205: 1332-1332
  • 13 Heemskerk JW, Vuist WM, Feijge MA, Reutelingsperger CP, Lindhout T. Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: evidence for regulation by protein tyrosine kinase-dependent Ca2+ responses. Blood 1997; 90 (07) 2615-2625
  • 14 Abaeva AA, Canault M, Kotova YN. et al. Procoagulant platelets form an α-granule protein-covered “cap” on their surface that promotes their attachment to aggregates. J Biol Chem 2013; 288 (41) 29621-29632
  • 15 Agbani EO, van den Bosch MTJ, Brown E. et al. Coordinated membrane ballooning and procoagulant spreading in human platelets. Circulation 2015; 132 (15) 1414-1424
  • 16 Mitchell JL, Lionikiene AS, Fraser SR, Whyte CS, Booth NA, Mutch NJ. Functional factor XIII-A is exposed on the stimulated platelet surface. Blood 2014; 124 (26) 3982-3990
  • 17 Whyte CS, Swieringa F, Mastenbroek TG. et al. Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow. Blood 2015; 125 (16) 2568-2578
  • 18 Mattheij NJA, Gilio K, van Kruchten R. et al. Dual mechanism of integrin αIIbβ3 closure in procoagulant platelets. J Biol Chem 2013; 288 (19) 13325-13336
  • 19 Kulkarni S, Nesbitt WS, Dopheide SM. et al. Techniques to examine platelet adhesive interactions under flow. In: Gibbins JM, Mahaut-Smith MP. eds. Platelets and Megakaryocytes. New Jersey: Humana Press; 2004: 165-186
  • 20 Yakimenko AO, Verholomova FY, Kotova YN, Ataullakhanov FI, Panteleev MA. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys J 2012; 102 (10) 2261-2269
  • 21 De Marco L, Mazzucato M, Masotti A, Ruggeri ZM. Localization and characterization of an alpha-thrombin-binding site on platelet glycoprotein Ib alpha. J Biol Chem 1994; 269 (09) 6478-6484
  • 22 Kempton CL, Hoffman M, Roberts HR, Monroe DM. Platelet heterogeneity: variation in coagulation complexes on platelet subpopulations. Arterioscler Thromb Vasc Biol 2005; 25 (04) 861-866
  • 23 Panteleev MA, Ananyeva NM, Greco NJ, Ataullakhanov FI, Saenko EL. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J Thromb Haemost 2005; 3 (11) 2545-2553
  • 24 London FS, Marcinkiewicz M, Walsh PN. A subpopulation of platelets responds to thrombin- or SFLLRN-stimulation with binding sites for factor IXa. J Biol Chem 2004; 279 (19) 19854-19859
  • 25 Dasgupta SK, Abdel-Monem H, Niravath P. et al. Lactadherin and clearance of platelet-derived microvesicles. [Internet] Blood 2009; 113 (06) 1332-1339
  • 26 Sveshnikova AN, Balatskiy AV, Demianova AS. et al. Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling. J Thromb Haemost 2016; 14 (10) 2045-2057
  • 27 Kotova YN, Ataullakhanov FI, Panteleev MA. Formation of coated platelets is regulated by the dense granule secretion of adenosine 5'diphosphate acting via the P2Y12 receptor. J Thromb Haemost 2008; 6 (09) 1603-1605
  • 28 Kotova YN, Podoplelova NA, Obydennyy SI. et al. Binding of coagulation factor XIII zymogen to activated platelet subpopulations: roles of integrin αIIbβ3 and fibrinogen. Thromb Haemost 2019; 119 (06) 906-915
  • 29 Shakhidzhanov SS, Shaturny VI, Panteleev MA, Sveshnikova AN. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation. Biochim Biophys Acta 2015; 1850 (12) 2518-2529
  • 30 Leon C, Ravanat C, Freund M, Cazenave JP, Gachet C. Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity. Arterioscler Thromb Vasc Biol 2003; 23 (10) 1941-1947
  • 31 van der Meijden PE, Feijge MA, Giesen PL, Huijberts M, van Raak LP, Heemskerk JW. Platelet P2Y12 receptors enhance signalling towards procoagulant activity and thrombin generation: a study with healthy subjects and patients at thrombotic risk. Thromb Haemost 2005; 93 (06) 1128-1136
  • 32 Polgár J, Clemetson JM, Kehrel BE. et al. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem 1997; 272 (21) 13576-13583
  • 33 Ignatova AA, Ponomarenko EA, Polokhov DM. et al. Flow cytometry for pediatric platelets. Platelets 2019; 30 (04) 428-437
  • 34 Mammadova-Bach E, Ollivier V, Loyau S. et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood 2015; 126 (05) 683-691
  • 35 Remenyi G, Szasz R, Friese P, Dale GL. Role of mitochondrial permeability transition pore in coated-platelet formation. Arterioscler Thromb Vasc Biol 2005; 25 (02) 467-471
  • 36 Schoenwaelder SM, Yuan Y, Josefsson EC. et al. Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood 2009; 114 (03) 663-666
  • 37 Sveshnikova AN, Ataullakhanov FI, Panteleev MA. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1. Mol Biosyst 2015; 11 (04) 1052-1060
  • 38 Obydennyi SI, Artemenko EO, Sveshnikova AN. et al. Mechanisms of increased mitochondria-dependent necrosis in Wiskott-Aldrich syndrome platelets. Haematologica 2020; 105 (04) 1095-1106
  • 39 Obydennyy SI, Sveshnikova AN, Ataullakhanov FI, Panteleev MA. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation. J Thromb Haemost 2016; 14 (09) 1867-1881
  • 40 Artemenko EO, Yakimenko AO, Pichugin AV, Ataullakhanov FI, Panteleev MA. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets. Biochem J 2016; 473 (04) 435-448
  • 41 Reddy EC, Wang H, Christensen H. et al. Analysis of procoagulant phosphatidylserine-exposing platelets by imaging flow cytometry. Res Pract Thromb Haemost 2018; 2 (04) 736-750
  • 42 Alberio L, Ravanat C, Hechler B, Mangin PH, Lanza F, Gachet C. Delayed-onset of procoagulant signalling revealed by kinetic analysis of COAT platelet formation. Thromb Haemost 2017; 117 (06) 1101-1114
  • 43 Aliotta A, Bertaggia Calderara D, Zermatten MG. et al. Sodium-calcium exchanger reverse mode sustains dichotomous ion fluxes required for procoagulant COAT platelet formation. Thromb Haemost 2021; 121 (03) 309-321
  • 44 Abbasian N, Millington-Burgess SL, Chabra S, Malcor JD, Harper MT. Supramaximal calcium signaling triggers procoagulant platelet formation. Blood Adv 2020; 4 (01) 154-164
  • 45 Harper MT, Londoño JE, Quick K. et al. Transient receptor potential channels function as a coincidence signal detector mediating phosphatidylserine exposure. [Internet] Sci Signal 2013; 6 (281) ra50
  • 46 Rukoyatkina N, Begonja AJ, Geiger J, Eigenthaler M, Walter U, Gambaryan S. Phosphatidylserine surface expression and integrin alpha IIb beta 3 activity on thrombin/convulxin stimulated platelets/particles of different sizes. Br J Haematol 2009; 144 (04) 591-602
  • 47 Handtke S, Wesche J, Palankar R, Greinacher A, Thiele T. Function of large and small platelets differs, depending on extracellular calcium availability and type of inductor. Thromb Haemost 2020; 120 (07) 1075-1086
  • 48 Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 2002; 8 (10) 1175-1181
  • 49 Stalker TJ, Traxler EA, Wu J. et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 2013; 121 (10) 1875-1885
  • 50 Welsh JD, Poventud-Fuentes I, Sampietro S, Diamond SL, Stalker TJ, Brass LF. Hierarchical organization of the hemostatic response to penetrating injuries in the mouse macrovasculature. J Thromb Haemost 2017; 15 (03) 526-537
  • 51 Munnix ICA, Kuijpers MJE, Auger J. et al. Segregation of platelet aggregatory and procoagulant microdomains in thrombus formation: regulation by transient integrin activation. Arterioscler Thromb Vasc Biol 2007; 27 (11) 2484-2490
  • 52 Hayashi T, Mogami H, Murakami Y. et al. Real-time analysis of platelet aggregation and procoagulant activity during thrombus formation in vivo. Pflugers Arch 2008; 456 (06) 1239-1251
  • 53 Hua VM, Abeynaike L, Glaros E. et al. Necrotic platelets provide a procoagulant surface during thrombosis. Blood 2015; 126 (26) 2852-2862
  • 54 Kamocka MM, Mu J, Liu X. et al. Two-photon intravital imaging of thrombus development. J Biomed Opt 2010; 15 (01) 016020
  • 55 Yuan Y, Alwis I, Wu MCL. et al. Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia. Sci Transl Med 2017; 9 (409) eaam5861
  • 56 Jørgensen L, Borchgrevink CF. The platelet plug in normal persons. Acta Pathol Microbiol Scand 1963; 57: 427-437
  • 57 Hovig T, Rowsell HC, Dodds WJ, Jorgensen L, Mustard JF. Experimental hemostasis in normal dogs and dogs with congenital disorders of blood coagulation. Blood 1967; 30 (05) 636-668
  • 58 Tomaiuolo M, Matzko CN, Poventud-Fuentes I, Weisel JW, Brass LF, Stalker TJ. Interrelationships between structure and function during the hemostatic response to injury. Proc Natl Acad Sci U S A 2019; 116 (06) 2243-2252
  • 59 Nechipurenko DY, Receveur N, Yakimenko AO. et al. Clot contraction drives the translocation of procoagulant platelets to thrombus surface. Arterioscler Thromb Vasc Biol 2019; 39 (01) 37-47
  • 60 Zwaal RFA, Comfurius P, Bevers EM. Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids. Biochim Biophys Acta 2004; 1636 (2-3): 119-128
  • 61 Rosing J, Bevers EM, Comfurius P. et al. Impaired factor X and prothrombin activation associated with decreased phospholipid exposure in platelets from a patient with a bleeding disorder. Blood 1985; 65 (06) 1557-1561
  • 62 Daskalakis M, Colucci G, Keller P. et al. Decreased generation of procoagulant platelets detected by flow cytometric analysis in patients with bleeding diathesis. Cytometry B Clin Cytom 2014; 86 (06) 397-409
  • 63 Misceo D, Holmgren A, Louch WE. et al. A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 2014; 35 (05) 556-564
  • 64 Böhm J, Laporte J. Gain-of-function mutations in STIM1 and ORAI1 causing tubular aggregate myopathy and Stormorken syndrome. Cell Calcium 2018; 76: 1-9
  • 65 Winkler J, Kroiss S, Rand ML. et al. Platelet apoptosis in paediatric immune thrombocytopenia is ameliorated by intravenous immunoglobulin. Br J Haematol 2012; 156 (04) 508-515
  • 66 Ignatova AA, Demina IA, Ptushkin VV. et al. Evolution of platelet function in adult patients with chronic immune thrombocytopenia on romiplostim treatment. Br J Haematol 2019; 187 (02) e38-e42
  • 67 Martyanov AA, Morozova DS, Sorokina MA. et al. Heterogeneity of integrin αIIbβ3 function in pediatric immune thrombocytopenia revealed by continuous flow cytometry analysis. Int J Mol Sci MDPI AG 2020; 21: 3035
  • 68 Zhao L, Bi Y, Kou J, Shi J, Piao D. Phosphatidylserine exposing-platelets and microparticles promote procoagulant activity in colon cancer patients. J Exp Clin Cancer Res 2016; 35: 54
  • 69 Yang C, Ma R, Jiang T. et al. Contributions of phosphatidylserine-positive platelets and leukocytes and microparticles to hypercoagulable state in gastric cancer patients. Tumour Biol 2016; 37 (06) 7881-7891
  • 70 Prodan CI, Dale GL. Coated-platelets in ischemic stroke - potential insight into the etiology of stroke subtypes. Int J Stroke 2008; 3 (04) 249-250
  • 71 Prodan CI, Vincent AS, Dale GL. Coated-platelet levels are elevated in patients with transient ischemic attack. Transl Res 2011; 158 (01) 71-75
  • 72 Prodan CI, Stoner JA, Cowan LD, Dale GL. Higher coated-platelet levels are associated with stroke recurrence following nonlacunar brain infarction. J Cereb Blood Flow Metab 2013; 33 (02) 287-292
  • 73 Kirkpatrick AC, Stoner JA, Dale GL, Prodan CI. Elevated coated-platelets in symptomatic large-artery stenosis patients are associated with early stroke recurrence. Platelets 2014; 25 (02) 93-96
  • 74 Kirkpatrick AC, Tafur AJ, Vincent AS, Dale GL, Prodan CI. Coated-platelets improve prediction of stroke and transient ischemic attack in asymptomatic internal carotid artery stenosis. Stroke 2014; 45 (10) 2995-3001
  • 75 Kirkpatrick AC, Vincent AS, Dale GL, Prodan CI. Coated-platelets predict stroke at 30 days following TIA. Neurology 2017; 89 (02) 125-128
  • 76 Ray B, Pandav VM, Mathews EA. et al. Coated-platelet trends predict short-term clinical outcome after subarachnoid hemorrhage. Transl Stroke Res 2018; 9 (05) 459-470
  • 77 Prodan CI, Vincent AS, Padmanabhan R, Dale GL. Coated-platelet levels are low in patients with spontaneous intracerebral hemorrhage. Stroke 2009; 40 (07) 2578-2580
  • 78 Prodan CI, Vincent AS, Dale GL. Coated platelet levels correlate with bleed volume in patients with spontaneous intracerebral hemorrhage. Stroke 2010; 41 (06) 1301-1303
  • 79 Prodan CI, Stoner JA, Dale GL. Lower coated-platelet levels are associated with increased mortality after spontaneous intracerebral hemorrhage. Stroke 2015; 46 (07) 1819-1825
  • 80 Saxena K, Pethe K, Dale GL. Coated-platelet levels may explain some variability in clinical phenotypes observed with severe hemophilia. J Thromb Haemost 2010; 8 (05) 1140-1142
  • 81 Deb S, Boknäs N, Sjöström C, Tharmakulanathan A, Lotfi K, Ramström S. Varying effects of tyrosine kinase inhibitors on platelet function—a need for individualized CML treatment to minimize the risk for hemostatic and thrombotic complications?. Cancer Med 2020; 9 (01) 313-323
  • 82 Mezei G, Debreceni IB, Kerenyi A. et al. Dasatinib inhibits coated-platelet generation in patients with chronic myeloid leukemia. Platelets 2019; 30 (07) 836-843
  • 83 Kostos L, Burbury K, Srivastava G, Prince HM. Gastrointestinal bleeding in a chronic myeloid leukaemia patient precipitated by dasatinib-induced platelet dysfunction: Case report. Platelets 2015; 26 (08) 809-811
  • 84 Quintás-Cardama A, Kantarjian H, Ravandi F. et al. Bleeding diathesis in patients with chronic myelogenous leukemia receiving dasatinib therapy. Cancer 2009; 115 (11) 2482-2490
  • 85 Dmitrieva EA, Nikitin EA, Ignatova AA. et al. Platelet function and bleeding in chronic lymphocytic leukemia and mantle cell lymphoma patients on ibrutinib. J Thromb Haemost 2020; 18 (10) 2672-2684
  • 86 Colucci G, Stutz M, Rochat S. et al. The effect of desmopressin on platelet function: a selective enhancement of procoagulant COAT platelets in patients with primary platelet function defects. Blood 2014; 123 (12) 1905-1916
  • 87 Kjalke M, Kjellev S, Rojkjaer R. Preferential localization of recombinant factor VIIa to platelets activated with a combination of thrombin and a glycoprotein VI receptor agonist. J Thromb Haemost 2007; 5 (04) 774-780
  • 88 Podoplelova NA, Sveshnikova AN, Kotova YN. et al. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood 2016; 128 (13) 1745-1755