Subscribe to RSS
DOI: 10.1055/a-1393-8339
Platelets and Matrix Metalloproteinases: A Bidirectional Interaction with Multiple Pathophysiologic Implications

Abstract
Platelets contain and release several matrix metalloproteinases (MMPs), a highly conserved protein family with multiple functions in organism defense and repair. Platelet-released MMPs as well as MMPs generated by other cells within the cardiovascular system modulate platelet function in health and disease. In particular, a normal hemostatic platelet response to vessel wall injury may be transformed into pathological thrombus formation by platelet-released and/or by locally generated MMPs. However, it is becoming increasingly clear that platelets play a role not only in hemostasis but also in immune response, inflammation and allergy, atherosclerosis, and cancer development, and MMPs seem to contribute importantly to this role. A deeper understanding of these mechanisms may open the way to novel therapeutic approaches to the inhibition of their pathogenic effects and lead to significant advances in the treatment of cardiovascular, inflammatory, and neoplastic disorders.
Publication History
Received: 04 December 2020
Accepted: 15 February 2021
Article published online:
15 April 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci 2017; 147: 1-73
- 2 Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 2007; 82 (06) 1375-1381
- 3 Chesney CM, Harper E, Colman RW. Human platelet collagenase. J Clin Invest 1974; 53 (06) 1647-1654
- 4 Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW. Release of gelatinase A during platelet activation mediates aggregation. Nature 1997; 386 (6625): 616-619
- 5 Gresele P, Falcinelli E, Sebastiano M, Momi S. Matrix metalloproteinases and platelet function. Prog Mol Biol Transl Sci 2017; 147: 133-165
- 6 Gresele P, Kleiman NS, Lopez JA, Page CP. eds. Platelets in Thrombotic and Non-Thrombotic Disorders: An update. Springer International Publishing; 2017
- 7 Santos-Martínez MJ, Medina C, Jurasz P, Radomski MW. Role of metalloproteinases in platelet function. Thromb Res 2008; 121 (04) 535-542
- 8 Malara A, Ligi D, Di Buduo CA, Mannello F, Balduini A. Sub-cellular localization of metalloproteinases in megakaryocytes. Cells 2018; 7 (07) 80
- 9 Cecchetti L, Tolley ND, Michetti N, Bury L, Weyrich AS, Gresele P. Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events. Blood 2011; 118 (07) 1903-1911
- 10 Galt SW, Lindemann S, Allen L. et al. Outside-in signals delivered by matrix metalloproteinase-1 regulate platelet function. Circ Res 2002; 90 (10) 1093-1099
- 11 Stricker TP, Dumin JA, Dickeson SK. et al. Structural analysis of the alpha(2) integrin I domain/procollagenase-1 (matrix metalloproteinase-1) interaction. J Biol Chem 2001; 276 (31) 29375-29381
- 12 Trivedi V, Boire A, Tchernychev B. et al. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 2009; 137 (02) 332-343
- 13 Falcinelli E, Guglielmini G, Torti M, Gresele P. Intraplatelet signaling mechanisms of the priming effect of matrix metalloproteinase-2 on platelet aggregation. J Thromb Haemost 2005; 3 (11) 2526-2535
- 14 Villeneuve J, Block A, Le Bousse-Kerdilès MC, Lepreux S, Nurden P, Ripoche J, Nurden AT. Tissue inhibitors of matrix metalloproteinases in platelets and megakaryocytes: a novel organization for these secreted proteins. Exp Hematol 2009; 37: 849-856
- 15 Sawicki G, Sanders EJ, Salas E, Wozniak M, Rodrigo J, Radomski MW. Localization and translocation of MMP-2 during aggregation of human platelets. Thromb Haemost 1998; 80 (05) 836-839
- 16 Falcinelli E, Giannini S, Boschetti E, Gresele P. Platelets release active matrix metalloproteinase-2 in vivo in humans at a site of vascular injury: lack of inhibition by aspirin. Br J Haematol 2007; 138 (02) 221-230
- 17 Fernandez-Patron C, Martinez-Cuesta MA, Salas E. et al. Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2. Thromb Haemost 1999; 82 (06) 1730-1735
- 18 Guglielmini G, Appolloni V, Momi S. et al. Matrix metalloproteinase-2 enhances platelet deposition on collagen under flow conditions. Thromb Haemost 2016; 115 (02) 333-343
- 19 Gresele P, Falcinelli E, Loffredo F. et al. Platelets release matrix metalloproteinase-2 in the coronary circulation of patients with acute coronary syndromes: possible role in sustained platelet activation. Eur Heart J 2011; 32 (03) 316-325
- 20 Nocella C, Cammisotto V, Bartimoccia S. et al. A novel role of MMP2 in regulating platelet NOX2 activation. Free Radic Biol Med 2020; 152: 355-362
- 21 Mastenbroek TG, Feijge MA, Kremers RM. et al. Platelet-associated matrix metalloproteinases regulate thrombus formation and exert local collagenolytic activity. Arterioscler Thromb Vasc Biol 2015; 35 (12) 2554-2561
- 22 Falcinelli E, Bury L, Tolley N. et al. Response: MMP-9 in platelets: maybe, maybe not. Blood 2011; 118: 6471-6473
- 23 Kälvegren H, Jönsson S, Jonasson L. Release of matrix metalloproteinases-1 and -2, but not -9, from activated platelets measured by enzyme-linked immunosorbent assay. Platelets 2011; 22 (08) 572-578
- 24 Nakamura T, Ebihara I, Shimada N, Shoji H, Koide H. Modulation of plasma metalloproteinase-9 concentrations and peripheral blood monocyte mRNA levels in patients with septic shock: effect of fiber-immobilized polymyxin B treatment. Am J Med Sci 1998; 316 (06) 355-360
- 25 Wang J, Ye Y, Wei G. et al. Matrix metalloproteinase 12 facilitated platelet activation by shedding carcinoembryonic antigen related cell adhesion molecule 1. Biochem Biophys Res Commun 2017; 486 (04) 1103-1109
- 26 Amar S, Smith L, Fields GB. Matrix metalloproteinase collagenolysis in health and disease. Biochim Biophys Acta Mol Cell Res 2017; 1864 (11, Pt A) 1940-1951
- 27 Howes JM, Pugh N, Knäuper V, Farndale RW. Modified platelet deposition on matrix metalloproteinase 13 digested collagen I. J Thromb Haemost 2015; 13 (12) 2253-2259
- 28 Howes JM, Pugh N, Hamaia SW. et al. MMP-13 binds to platelet receptors αIIbβ3 and GPVI and impairs aggregation and thrombus formation. Res Pract Thromb Haemost 2018; 2 (02) 370-379
- 29 Kazes I, Elalamy I, Sraer JD, Hatmi M, Nguyen G. Platelet release of trimolecular complex components MT1-MMP/TIMP2/MMP2: involvement in MMP2 activation and platelet aggregation. Blood 2000; 96 (09) 3064-3069
- 30 Schmidt R, Bültmann A, Fischel S. et al. Extracellular matrix metalloproteinase inducer (CD147) is a novel receptor on platelets, activates platelets, and augments nuclear factor kappaB-dependent inflammation in monocytes. Circ Res 2008; 102 (03) 302-309
- 31 Sebastiano M, Momi S, Falcinelli E, Bury L, Hoylaerts M, Gresele P. MMP-2 mediates PAR1 biased signaling in human platelets: a novel mechanism regulating platelet activation. Blood 2017; 129: 883-895
- 32 Brooks PC, Strömblad S, Sanders LC. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 1996; 85 (05) 683-693
- 33 Choi WS, Jeon OH, Kim HH, Kim DS. MMP-2 regulates human platelet activation by interacting with integrin alphaIIbbeta3. J Thromb Haemost 2008; 6 (03) 517-523
- 34 Soslau G, Mason C, Lynch S. et al. Intracellular matrix metalloproteinase-2 (MMP-2) regulates human platelet activation via hydrolysis of talin. Thromb Haemost 2014; 111 (01) 140-153
- 35 Radomski A, Stewart MW, Jurasz P, Radomski MW. Pharmacological characteristics of solid-phase von Willebrand factor in human platelets. Br J Pharmacol 2001; 134 (05) 1013-1020
- 36 Lee YM, Lee JJ, Shen MY, Hsiao G, Sheu JR. Inhibitory mechanisms of activated matrix metalloproteinase-9 on platelet activation. Eur J Pharmacol 2006; 537 (1-3): 52-58
- 37 Sheu JR, Fong TH, Liu CM. et al. Expression of matrix metalloproteinase-9 in human platelets: regulation of platelet activation in in vitro and in vivo studies. Br J Pharmacol 2004; 143 (01) 193-201
- 38 Momi S, Sebastiano M, Falcinelli E, Gresele P. Matrix metalloproteinase-13 (MMP-13) is a novel regulator of platelet activation and in vivo thrombus formation. Blood Transfus 2018; 16 (Suppl 4) s246
- 39 Seizer P, Borst O, Langer HF. et al. EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI-EMMPRIN interaction. Thromb Haemost 2009; 101 (04) 682-686
- 40 Seizer P, Ungern-Sternberg SN, Schönberger T. et al. Extracellular cyclophilin A activates platelets via EMMPRIN (CD147) and PI3K/Akt signaling, which promotes platelet adhesion and thrombus formation in vitro and in vivo. Arterioscler Thromb Vasc Biol 2015; 35 (03) 655-663
- 41 Momi S, Falcinelli E, Giannini S. et al. Loss of matrix metalloproteinase 2 in platelets reduces arterial thrombosis in vivo. J Exp Med 2009; 206 (11) 2365-2379
- 42 Casscells W, Naghavi M, Willerson JT. Vulnerable atherosclerotic plaque: a multifocal disease. Circulation 2003; 107 (16) 2072-2075
- 43 Siemianowicz K, Gminski J, Goss M. et al. Influence of elastin-derived peptides on metalloprotease production in endothelial cells. Exp Ther Med 2010; 1 (06) 1057-1060
- 44 Pyo R, Lee JK, Shipley JM. et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest 2000; 105 (11) 1641-1649
- 45 Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 2002; 110 (05) 625-632
- 46 Davis V, Persidskaia R, Baca-Regen L. et al. Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 1998; 18 (10) 1625-1633
- 47 Xiong W, Knispel R, MacTaggart J, Greiner TC, Weiss SJ, Baxter BT. Membrane-type 1 matrix metalloproteinase regulates macrophage-dependent elastolytic activity and aneurysm formation in vivo. J Biol Chem 2009; 284 (03) 1765-1771
- 48 Owens III AP, Edwards TL, Antoniak S. et al. Platelet inhibitors reduce rupture in a mouse model of established abdominal aneurysm. Arterioscler Thromb Vasc Biol 2015; 35 (09) 2032-2041
- 49 Momi S, Falcinelli E, Gresele P. Blood cells-derived matrix metalloproteinase (MMP)-2 contributes to abdominal aortic aneurism (AAA) development in a mouse model of hypertension/hypercholesterolemia. Journal of Thrombosis and Haemostasis 2015; 13 (Suppl. 02) 62-63 (abstract AS 174)
- 50 Rahman M, Zhang S, Chew M, Syk I, Jeppsson B, Thorlacius H. Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis. J Thromb Haemost 2013; 11 (07) 1385-1398
- 51 Kerr BA, McCabe NP, Feng W, Byzova TV. Platelets govern pre-metastatic tumor communication to bone. Oncogene 2013; 32 (36) 4319-4324
- 52 Fanjul-Fernández M, Folgueras AR, Fueyo A. et al. Matrix metalloproteinase MMP-1a is dispensable for normal growth and fertility in mice and promotes lung cancer progression by modulating inflammatory responses. J Biol Chem 2013; 288 (20) 14647-14656
- 53 Huet E, Gabison E, Vallee B. et al. Deletion of extracellular matrix metalloproteinase inducer/CD147 induces altered cardiac extracellular matrix remodeling in aging mice. J Physiol Pharmacol 2015; 66 (03) 355-366
- 54 Cognasse F, Hamzeh-Cognasse H, Chabert A. et al. Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets. BMC Immunol 2014; 15: 15
- 55 Malik J, Stulc T, Ceska R. Matrix metalloproteinases in isolated hypercholesterolemia. Int Angiol 2005; 24 (03) 300-303
- 56 Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92 (08) 827-839
- 57 Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal 2008; 1 (27) re6
- 58 Lenti M, Falcinelli E, Pompili M. et al. Matrix metalloproteinase-2 of human carotid atherosclerotic plaques promotes platelet activation. Correlation with ischaemic events. Thromb Haemost 2014; 111 (06) 1089-1101
- 59 Lerner A, Neidhöfer S, Reuter S, Matthias T. MMP3 is a reliable marker for disease activity, radiological monitoring, disease outcome predictability, and therapeutic response in rheumatoid arthritis. Best Pract Res Clin Rheumatol 2018; 32 (04) 550-562
- 60 Lee JM, Kronbichler A, Park SJ. et al. Association between serum matrix metalloproteinase- (MMP-) 3 levels and systemic lupus erythematosus: a meta-analysis. Dis Markers 2019; 2019: 9796735
- 61 Hu W, Wei R, Wang L, Lu J, Liu H, Zhang W. Correlations of MMP-1, MMP-3, and MMP-12 with the degree of atherosclerosis, plaque stability and cardiovascular and cerebrovascular events. Exp Ther Med 2018; 15 (02) 1994-1998
- 62 Boilard E, Nigrovic PA, Larabee K. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327 (5965): 580-583
- 63 Linge P, Fortin PR, Lood C, Bengtsson AA, Boilard E. The non-haemostatic role of platelets in systemic lupus erythematosus. Nat Rev Rheumatol 2018; 14 (04) 195-213
- 64 Chatterjee M, Gawaz M. Platelets in atherosclerosis. In: Gresele P, Kleiman NS, Lopez JA, Page CP. eds. Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: An Update. Springer International Publishing; 2017: 993-1013
- 65 Menchén L, Marín-Jiménez I, Arias-Salgado EG. et al. Matrix metalloproteinase 9 is involved in Crohn's disease-associated platelet hyperactivation through the release of soluble CD40 ligand. Gut 2009; 58 (07) 920-928
- 66 Fernández Bello I, Álvarez MT, López-Longo FJ. et al. Platelet soluble CD40L and matrix metalloproteinase 9 activity are proinflammatory mediators in Behçet disease patients. Thromb Haemost 2012; 107 (01) 88-98
- 67 Giannini S, Falcinelli E, Bury L. et al. Interaction with damaged vessel wall in vivo in humans induces platelets to express CD40L resulting in endothelial activation with no effect of aspirin intake. Am J Physiol Heart Circ Physiol 2011; 300 (06) H2072-H2079
- 68 Cimmino G, Ragni M, Cirillo P. et al. C-reactive protein induces expression of matrix metalloproteinase-9: a possible link between inflammation and plaque rupture. Int J Cardiol 2013; 168 (02) 981-986
- 69 Schulz C, von Brühl ML, Barocke V. et al. EMMPRIN (CD147/basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall. J Thromb Haemost 2011; 9 (05) 1007-1019
- 70 Schmidt R, Bültmann A, Ungerer M. et al. Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells: implications in acute myocardial infarction. Circulation 2006; 113 (06) 834-841
- 71 Seizer P, Schönberger T, Schött M. et al. EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation. Atherosclerosis 2010; 209 (01) 51-57
- 72 Major TC, Liang L, Lu X, Rosebury W, Bocan TM. Extracellular matrix metalloproteinase inducer (EMMPRIN) is induced upon monocyte differentiation and is expressed in human atheroma. Arterioscler Thromb Vasc Biol 2002; 22 (07) 1200-1207
- 73 Pennings GJ, Yong AS, Wong C. et al. Circulating levels of soluble EMMPRIN (CD147) correlate with levels of soluble glycoprotein VI in human plasma. Platelets 2014; 25 (08) 639-642
- 74 Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002; 295 (5564): 2387-2392
- 75 Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 2008; 75 (02) 346-359
- 76 Prescott MF, Sawyer WK, Von Linden-Reed J. et al. Effect of matrix metalloproteinase inhibition on progression of atherosclerosis and aneurysm in LDL receptor-deficient mice overexpressing MMP-3, MMP-12, and MMP-13 and on restenosis in rats after balloon injury. Ann N Y Acad Sci 1999; 878: 179-190
- 77 Johnson JL, Fritsche-Danielson R, Behrendt M. et al. Effect of broad-spectrum matrix metalloproteinase inhibition on atherosclerotic plaque stability. Cardiovasc Res 2006; 71 (03) 586-595
- 78 Hudson MP, Armstrong PW, Ruzyllo W. et al. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J Am Coll Cardiol 2006; 48 (01) 15-20
- 79 Peterson JT. Matrix metalloproteinase inhibitor development and the remodeling of drug discovery. Heart Fail Rev 2004; 9 (01) 63-79
- 80 Camp TM, Tyagi SC, Aru GM, Hayden MR, Mehta JL, Tyagi SC. Doxycycline ameliorates ischemic and border-zone remodeling and endothelial dysfunction after myocardial infarction in rats. J Heart Lung Transplant 2004; 23 (06) 729-736
- 81 Manning MW, Cassis LA, Daugherty A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2003; 23 (03) 483-488
- 82 Axisa B, Loftus IM, Naylor AR. et al. Prospective, randomized, double-blind trial investigating the effect of doxycycline on matrix metalloproteinase expression within atherosclerotic carotid plaques. Stroke 2002; 33 (12) 2858-2864
- 83 Brown DL, Desai KK, Vakili BA, Nouneh C, Lee HM, Golub LM. Clinical and biochemical results of the metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) pilot trial. Arterioscler Thromb Vasc Biol 2004; 24 (04) 733-738
- 84 Cerisano G, Buonamici P, Valenti R. et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur Heart J 2014; 35 (03) 184-191
- 85 Switzer JA, Hess DC, Ergul A. et al. Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke 2011; 42 (09) 2633-2635
- 86 Johnson JL, Devel L, Czarny B. et al. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol 2011; 31 (03) 528-535
- 87 Scannevin RH, Alexander R, Haarlander TM. et al. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J Biol Chem 2017; 292 (43) 17963-17974
- 88 Jacobsen JA, Major Jourden JL, Miller MT, Cohen SM. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta 2010; 1803 (01) 72-94
- 89 Gu Z, Cui J, Brown S. et al. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 2005; 25 (27) 6401-6408
- 90 Chen S, Chen Z, Cui J. et al. Early abrogation of gelatinase activity extends the time window for tPA thrombolysis after embolic focal cerebral ischemia in mice. eNeuro 2018; 5 (03) ENEURO.0391-17.2018
- 91 Pahk K, Joung C, Song HY, Kim S, Kim WK. SP-8356, a novel inhibitor of CD147-cyclophilin A interactions, reduces plaque progression and stabilizes vulnerable plaques in ApoE-deficient mice. Int J Mol Sci 2019; 21 (01) 95
- 92 Pahk K, Noh H, Joung C. et al. A novel CD147 inhibitor, SP-8356, reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation. J Transl Med 2019; 17 (01) 274
- 93 Yamamoto D, Takai S, Miyazaki M. Prediction of interaction mode between a typical ACE inhibitor and MMP-9 active site. Biochem Biophys Res Commun 2007; 354 (04) 981-984
- 94 Kuntze LB, Antonio RC, Izidoro-Toledo TC, Meschiari CA, Tanus-Santos JE, Gerlach RF. Captopril and lisinopril only inhibit matrix metalloproteinase-2 (MMP-2) activity at millimolar concentrations. Basic Clin Pharmacol Toxicol 2014; 114 (03) 233-239
- 95 Yamamoto D, Takai S, Miyazaki M. Inhibitory profiles of captopril on matrix metalloproteinase-9 activity. Eur J Pharmacol 2008; 588 (2-3): 277-279
- 96 Pfeffer MA. ACE inhibitors in acute myocardial infarction: patient selection and timing. Circulation 1998; 97 (22) 2192-2194
- 97 Yamamoto D, Takai S. Pharmacological implications of MMP-9 inhibition by ACE inhibitors. Curr Med Chem 2009; 16 (11) 1349-1354
- 98 Liang C, Wu ZG, Ding J. et al. Losartan inhibited expression of matrix metalloproteinases in rat atherosclerotic lesions and angiotensin II-stimulated macrophages. Acta Pharmacol Sin 2004; 25 (11) 1426-1432
- 99 Yang D, Ma S, Li D, Tang B, Yang Y. Angiotensin II receptor blockade improves matrix metalloproteinases/tissue inhibitor of matrix metalloproteinase-1 balance and restores fibronectin expression in rat infarcted myocardium. Biochem Biophys Res Commun 2009; 388 (03) 606-611
- 100 Miyazaki S, Kasai T, Miyauchi K. et al. Changes of matrix metalloproteinase-9 level is associated with left ventricular remodeling following acute myocardial infarction among patients treated with trandolapril, valsartan or both. Circ J 2010; 74 (06) 1158-1164
- 101 Senzaki H, Paolocci N, Gluzband YA. et al. β-blockade prevents sustained metalloproteinase activation and diastolic stiffening induced by angiotensin II combined with evolving cardiac dysfunction. Circ Res 2000; 86 (07) 807-815
- 102 Rizzi E, Guimaraes DA, Ceron CS. et al. β1-Adrenergic blockers exert antioxidant effects, reduce matrix metalloproteinase activity, and improve renovascular hypertension-induced cardiac hypertrophy. Free Radic Biol Med 2014; 73: 308-317
- 103 Cimmino G, Ibanez B, Giannarelli C. et al. Carvedilol administration in acute myocardial infarction results in stronger inhibition of early markers of left ventricular remodeling than metoprolol. Int J Cardiol 2011; 153 (03) 256-261
- 104 Song G, Hennessy M, Zhao YL. et al. Adrenoceptor blockade alters plasma gelatinase activity in patients with heart failure and MMP-9 promoter activity in a human cell line (ECV304). Pharmacol Res 2006; 54 (01) 57-64
- 105 Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 2001; 103 (07) 926-933
- 106 Li J, Zhao SP, Peng DQ, Xu ZM, Zhou HN. Early effect of pravastatin on serum soluble CD40L, matrix metalloproteinase-9, and C-reactive protein in patients with acute myocardial infarction. Clin Chem 2004; 50 (09) 1696-1699
- 107 Nakaya R, Uzui H, Shimizu H. et al. Pravastatin suppresses the increase in matrix metalloproteinase-2 levels after acute myocardial infarction. Int J Cardiol 2005; 105 (01) 67-73
- 108 Yasuda S, Miyazaki S, Kinoshita H. et al. Enhanced cardiac production of matrix metalloproteinase-2 and -9 and its attenuation associated with pravastatin treatment in patients with acute myocardial infarction. Clin Sci (Lond) 2007; 112 (01) 43-49
- 109 Ichihara S, Noda A, Nagata K. et al. Pravastatin increases survival and suppresses an increase in myocardial matrix metalloproteinase activity in a rat model of heart failure. Cardiovasc Res 2006; 69 (03) 726-735
- 110 Jurasz P, Sawicki G, Duszyk M. et al. Matrix metalloproteinase 2 in tumor cell-induced platelet aggregation: regulation by nitric oxide. Cancer Res 2001; 61 (01) 376-382
- 111 Marturano A, Hendrickx MLV, Falcinelli E. et al. Development of anti-matrix metalloproteinase-2 (MMP-2) nanobodies as potential therapeutic and diagnostic tools. Nanomedicine (Lond) 2020; 24: 102103
- 112 Momi S, Wiwanitkit V. Phylogeny of blood platelets. In: Gresele P, Kleiman NS, Lopez JA, Page CP. eds. Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update. Springer International Publishing; 2017: 11-20
- 113 Das S, Mandal M, Chakraborti T, Mandal A, Chakraborti S. Structure and evolutionary aspects of matrix metalloproteinases: a brief overview. Mol Cell Biochem 2003; 253 (1-2): 31-40
- 114 Gresele P, Falcinelli E, Momi S. Potentiation and priming of platelet activation: a potential target for antiplatelet therapy. Trends Pharmacol Sci 2008; 29 (07) 352-360