Klin Monbl Augenheilkd 2021; 238(03): 249-259
DOI: 10.1055/a-1388-7236
Übersicht

Diagnose erblicher Netzhauterkrankungen

Article in several languages: English | deutsch
1   Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
2   Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
3   Department of Ophthalmology, University of Bonn, Bonn, Germany
,
1   Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
2   Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
,
4   Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
,
Günter Rudolph
4   Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
,
1   Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
2   Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
› Author Affiliations

Zusammenfassung

Erbliche Netzhauterkrankungen sind eine häufige Ursache für eine schwere Sehbehinderung oder Erblindung bei Kindern und Erwachsenen im erwerbsfähigen Alter. Aufgrund einer großen Heterogenität besteht eine hohe Variabilität hinsichtlich Einschränkungen der Sehfunktion, Auswirkungen auf das alltägliche Leben, auf die Lebensplanung sowie hinsichtlich neuer Therapieverfahren. Insofern ist eine frühzeitige und präzise Diagnose für Patienten und ihre Familien von Bedeutung. Die Charakterisierung einer erblichen Netzhauterkrankung umfasst eine detaillierte Anamnese, eine umfassende klinische Untersuchung mit Testung der Sehfunktion, eine multimodale retinale Bildgebung als auch eine molekulargenetische Diagnostik. Neben der Unterscheidung verschiedener erblicher Netzhauterkrankungen ist eine Abgrenzung zu monogenen Systemerkrankungen mit einer Netzhautbeteiligung, sowie eine Abgrenzung zu Erkrankungen, die eine Netzhautdystrophie imitieren, wichtig.



Publication History

Received: 13 October 2020

Accepted: 09 February 2021

Article published online:
30 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Birtel J, Eisenberger T, Gliem M. et al. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep 2018; 8: 4824
  • 2 Birtel J, Gliem M, Mangold E. et al. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa. PLoS One 2018; 13: e0207958
  • 3 Birtel J, Gliem M, Holz FG. et al. [Imaging and molecular genetic diagnostics for the characterization of retinal dystrophies]. Ophthalmologe 2018; 115: 1021-1027
  • 4 Kellner U, Tillack H, Renner AB. Hereditäre Netzhaut-Aderhaut-Dystrophien Teil 1: Pathogenese, Diagnostik, Therapie, Patientenbetreuung. Ophthalmologe 2004; 101: 307-319
  • 5 Renner AB, Kellner U. [Hereditary Macular Dystrophies]. Klin Monbl Augenheilkd 2016; 233: 1124-1141
  • 6 Kellner U, Kellner S, Saleh M. et al. [Congenital Retinal Dystrophies: Combining Ophthalmological Techniques to Improve the Read-out]. Klin Monbl Augenheilkd 2020; 237: 275-287
  • 7 Birtel J, Herrmann P, Garrelfs SF. et al. The Ocular Phenotype in Primary Hyperoxaluria Type 1. Am J Ophthalmol 2019; 206: 184-191
  • 8 Birtel J, Charbel Issa P, Herrmann P. et al. Examination of the eye and retinal alterations in primary hyperoxaluria type 1. Nephrol Dial Transplant 2020; DOI: 10.1093/ndt/gfaa101.
  • 9 Gliem M, Müller PL, Birtel J. et al. Frequency, Phenotypic Characteristics and Progression of Atrophy Associated With a Diseased Bruchʼs Membrane in Pseudoxanthoma Elasticum. Invest Ophthalmol Vis Sci 2016; 57: 3323-3330
  • 10 Gliem M, Zaeytijd JD, Finger RP. et al. An update on the ocular phenotype in patients with pseudoxanthoma elasticum. Front Genet 2013; 4: 14
  • 11 Shalaby AK, Charbel Issa P. Retinopathy in McArdle Disease. Ophthalmol Retina 2021; 2: 117
  • 12 Kellner U, Kellner S, Weinitz S. et al. [Toxic retinopathies]. Ophthalmologe 2020; 117: 1247-1266
  • 13 Marmor MF, Kellner U, Lai TY. et al. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology 2011; 118: 415-422
  • 14 Yusuf IH, Charbel Issa P, Lotery AJ. Pentosan Polysulfate Maculopathy-Prescribers Should Be Aware. JAMA Ophthalmol 2020; 138: 900-902 doi:10.1001/jamaophthalmol.2020.2364
  • 15 Melles RB, Marmor MF. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol 2014; 132: 1453-1460
  • 16 Wang D, Au A, Gunnemann F. et al. Pentosan-associated maculopathy: prevalence, screening guidelines, and spectrum of findings based on prospective multimodal analysis. Can J Ophthalmol 2020; 55: 116-125
  • 17 Shah R, Simonett JM, Lyons RJ. et al. Disease Course in Patients With Pentosan Polysulfate Sodium-Associated Maculopathy After Drug Cessation. JAMA Ophthalmol 2020; 138: 894-900 doi:10.1001/jamaophthalmol.2020.2349
  • 18 Yusuf IH, Ledingham JM, MacPhie E. et al. Monitoring for retinal toxicity in patients taking hydroxychloroquine and chloroquine. Rheumatology (Oxford) 2019; 58: 3-4
  • 19 Oishi A, Noda K, Birtel J. et al. Effect of smoking on macular function and retinal structure in retinitis pigmentosa. Brain Commun 2020; 2: fcaa117 doi:10.1093/braincomms/fcaa117
  • 20 Radu RA, Yuan Q, Hu J. et al. Accelerated accumulation of lipofuscin pigments in the RPE of a mouse model for ABCA4-mediated retinal dystrophies following Vitamin A supplementation. Invest Ophthalmol Vis Sci 2008; 49: 3821-3829
  • 21 Birtel J, Gliem M, Mangold E. et al. Novel Insights Into the Phenotypical Spectrum of KIF11-Associated Retinopathy, Including a New Form of Retinal Ciliopathy. Invest Ophthalmol Vis Sci 2017; 58: 3950-3959
  • 22 Jones GE, Ostergaard P, Moore AT. et al. Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR): review of phenotype associated with KIF11 mutations. Eur J Hum Genet 2014; 22: 881-887
  • 23 Garcia-Filion P, Borchert M. Optic nerve hypoplasia syndrome: a review of the epidemiology and clinical associations. Curr Treat Options Neurol 2013; 15: 78-89
  • 24 Weber P, John R, Konrad K. et al. Visuelle Wahrnehmungsstörungen. Monatsschr Kinderheilkd 2018; 166: 437-444
  • 25 Kellner U, Renner AB, Herbst SM. et al. [Hereditary retinal dystrophies]. Klin Monbl Augenheilkd 2012; 229: 171-193 quiz 194–196
  • 26 Kellner U, Kellner S, Renner AB. et al. [Evidence-based diagnostic approach to inherited retinal dystrophies 2009]. Klin Monbl Augenheilkd 2009; 226: 999-1011
  • 27 Wabbels B, Preising MN, Kretschmann U. et al. Genotype-phenotype correlation and longitudinal course in ten families with Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 2006; 244: 1453-1466
  • 28 Hood DC, Lazow MA, Locke KG. et al. The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2011; 52: 101-108
  • 29 Jacobson SG, Aleman TS, Sumaroka A. et al. Disease boundaries in the retina of patients with Usher syndrome caused by MYO7A gene mutations. Invest Ophthalmol Vis Sci 2009; 50: 1886-1894
  • 30 Greenberg JP, Sherman J, Zweifel SA. et al. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia. JAMA Ophthalmol 2014; 132: 437-445
  • 31 Chen RW, Greenberg JP, Lazow MA. et al. Autofluorescence imaging and spectral-domain optical coherence tomography in incomplete congenital stationary night blindness and comparison with retinitis pigmentosa. Am J Ophthalmol 2012; 153: 143-154.e2
  • 32 Zeitz C, Robson AG, Audo I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res 2015; 45: 58-110
  • 33 Schmitz-Valckenberg S, Pfau M, Fleckenstein M. et al. Fundus autofluorescence imaging. Prog Retin Eye Res 2020; DOI: 10.1016/j.preteyeres.2020.100893.
  • 34 Birtel J, Gliem M, Herrmann P. et al. Peripapillary Sparing in Autosomal Recessive Bestrophinopathy. Ophthalmol Retina 2020; 4: 523-529
  • 35 Charbel Issa P, Gliem M, Yusuf IH. et al. A Specific Macula-Predominant Retinal Phenotype Is Associated With the CDHR1 Variant c.783G>A, a Silent Mutation Leading to In-Frame Exon Skipping. Invest Ophthalmol Vis Sci 2019; 60: 3388-3397
  • 36 Müller PL, Birtel J, Herrmann P. et al. Functional Relevance and Structural Correlates of Near Infrared and Short Wavelength Fundus Autofluorescence Imaging in ABCA4-Related Retinopathy. Transl Vis Sci Technol 2019; 8: 46
  • 37 Robson AG, Tufail A, Fitzke F. et al. Serial imaging and structure-function correlates of high-density rings of fundus autofluorescence in retinitis pigmentosa. Retina 2011; 31: 1670-1679
  • 38 Robson AG, Michaelides M, Saihan Z. et al. Functional characteristics of patients with retinal dystrophy that manifest abnormal parafoveal annuli of high density fundus autofluorescence; a review and update. Doc Ophthalmol 2008; 116: 79-89
  • 39 Lima LH, Burke T, Greenstein VC. et al. Progressive constriction of the hyperautofluorescent ring in retinitis pigmentosa. Am J Ophthalmol 2012; 153: 718-727 727.e1–727.e2 doi:10.1016/j.ajo.2011.08.043
  • 40 Popovic P, Jarc-Vidmar M, Hawlina M. Abnormal fundus autofluorescence in relation to retinal function in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2005; 243: 1018-1027
  • 41 Aizawa S, Mitamura Y, Hagiwara A. et al. Changes of fundus autofluorescence, photoreceptor inner and outer segment junction line, and visual function in patients with retinitis pigmentosa. Clin Exp Ophthalmol 2010; 38: 597-604
  • 42 Brandl C, Schulz HL, Charbel Issa P. et al. Mutations in the Genes for Interphotoreceptor Matrix Proteoglycans, IMPG1 and IMPG2, in Patients with Vitelliform Macular Lesions. Genes (Basel) 2017; 8: 170
  • 43 Wegscheider E, Preising MN, Lorenz B. Fundus autofluorescence in carriers of X-linked recessive retinitis pigmentosa associated with mutations in RPGR, and correlation with electrophysiological and psychophysical data. Graefes Arch Clin Exp Ophthalmol 2004; 242: 501-511
  • 44 Nanda A, Salvetti AP, Clouston P. et al. Exploring the Variable Phenotypes of RPGR Carrier Females in Assessing their Potential for Retinal Gene Therapy. Genes (Basel) 2018; 9: 643
  • 45 Huang AS, Kim LA, Fawzi AA. Clinical characteristics of a large choroideremia pedigree carrying a novel CHM mutation. Arch Ophthalmol 2012; 130: 1184-1189
  • 46 Edwards TL, Groppe M, Jolly JK. et al. Correlation of retinal structure and function in choroideremia carriers. Ophthalmology 2015; 122: 1274-1276
  • 47 Renner AB, Fiebig BS, Cropp E. et al. Progression of retinal pigment epithelial alterations during long-term follow-up in female carriers of choroideremia and report of a novel CHM mutation. Arch Ophthalmol 2009; 127: 907-912
  • 48 Piccolino FC, Borgia L, Zinicola E. et al. Pre-injection fluorescence in indocyanine green angiography. Ophthalmology 1996; 103: 1837-1845
  • 49 Birtel J, Salvetti AP, Jolly JK. et al. Near-Infrared Autofluorescence in Choroideremia: Anatomic and Functional Correlations. Am J Ophthalmol 2019; 199: 19-27
  • 50 Kellner S, Kellner U, Weber BH. et al. Lipofuscin- and melanin-related fundus autofluorescence in patients with ABCA4-associated retinal dystrophies. Am J Ophthalmol 2009; 147: 895-902 902.e1
  • 51 Duncker T, Tabacaru MR, Lee W. et al. Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013; 54: 585-591
  • 52 Kellner U, Kellner S, Weber BH. et al. Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa. Eye (Lond) 2009; 23: 1349-1359
  • 53 De Silva SR, Neffendorf JE, Birtel J. et al. Improved Diagnosis of Retinal Laser Injuries Using Near-Infrared Autofluorescence. Am J Ophthalmol 2019; 208: 87-93
  • 54 Birtel J, Hildebrand GD, Charbel Issa P. Laser Pointer: A Possible Risk for the Retina. Klin Monbl Augenheilkd 2020; 237: 1187-1193
  • 55 Gliem M, Muller PL, Birtel J. et al. Quantitative Fundus Autofluorescence and Genetic Associations in Macular, Cone, and Cone-Rod Dystrophies. Ophthalmol Retina 2020; 4: 737-749
  • 56 Müller PL, Gliem M, McGuinnes M. et al. Quantitative Fundus Autofluorescence in ABCA4-Related Retinopathy-Functional Relevance and Genotype-Phenotype Correlation. Am J Ophthalmol 2020; 222: 340-350
  • 57 Reiniger JL, Domdei N, Pfau M. et al. [Potential of Adaptive Optics for the Diagnostic Evaluation of Hereditary Retinal Diseases]. Klin Monbl Augenheilkd 2017; 234: 311-319
  • 58 Harmening WM, Sincich LC. Adaptive Optics for Photoreceptor-targeted Psychophysics. In: Bille JF. ed. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in biomedical Optics. Cham: Springer International Publishing; 2019: 359-375
  • 59 Birtel J, Lindner M, Mishra DK. et al. Retinal imaging including optical coherence tomography angiography for detecting active choroidal neovascularization in pseudoxanthoma elasticum. Clin Exp Ophthalmol 2019; 47: 240-249
  • 60 Spaide RF, Fujimoto JG, Waheed NK. et al. Optical coherence tomography angiography. Prog Retin Eye Res 2018; 64: 1-55
  • 61 Arrigo A, Romano F, Parodi MB. et al. Br J Ophthalmol 2020; DOI: 10.1136/bjophthalmol-2020-316528.
  • 62 Cremers FPM, Lee W, Collin RWJ. et al. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79: 100861 doi:10.1016/j.preteyeres.2020.100861
  • 63 Giroux JM, Barbeau A. Erythrokeratodermia with ataxia. Arch Dermatol 1972; 106: 183-188
  • 64 Aldahmesh MA, Mohamed JY, Alkuraya HS. et al. Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am J Hum Genet 2011; 89: 745-750
  • 65 Kniazeva M, Chiang MF, Morgan B. et al. A new locus for autosomal dominant stargardt-like disease maps to chromosome 4. Am J Hum Genet 1999; 64: 1394-1399
  • 66 Wolock CJ, Stong N, Ma CJ. et al. A case-control collapsing analysis identifies retinal dystrophy genes associated with ophthalmic disease in patients with no pathogenic ABCA4 variants. Genet Med 2019; 21: 2336-2344
  • 67 Maw MA, Corbeil D, Koch J. et al. A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 2000; 9: 27-34
  • 68 Zhang Q, Zulfiqar F, Xiao X. et al. Severe retinitis pigmentosa mapped to 4p15 and associated with a novel mutation in the PROM1 gene. Hum Genet 2007; 122: 293-299
  • 69 Cehajic-Kapetanovic J, Birtel J, McClements ME. et al. Clinical and Molecular Characterization of PROM1-Related Retinal Degeneration. JAMA Netw Open 2019; 2: e195752
  • 70 Weleber RG, Carr RE, Murphey WH. et al. Phenotypic variation including retinitis pigmentosa, pattern dystrophy, and fundus flavimaculatus in a single family with a deletion of codon 153 or 154 of the peripherin/RDS gene. Arch Ophthalmol 1993; 111: 1531-1542
  • 71 Wells J, Wroblewski J, Keen J. et al. Mutations in the human retinal degeneration slow (RDS) gene can cause either retinitis pigmentosa or macular dystrophy. Nat Genet 1993; 3: 213-218
  • 72 Leroy BP, Kailasanathan A, De Laey JJ. et al. Intrafamilial phenotypic variability in families with RDS mutations: exclusion of ROM1 as a genetic modifier for those with retinitis pigmentosa. Br J Ophthalmol 2007; 91: 89-93
  • 73 Sharon D, Sandberg MA, Caruso RC. et al. Shared mutations in NR2E3 in enhanced S-cone syndrome, Goldmann-Favre syndrome, and many cases of clumped pigmentary retinal degeneration. Arch Ophthalmol 2003; 121: 1316-1323
  • 74 Samardzija M, Wenzel A, Naash M. et al. Rpe65 as a modifier gene for inherited retinal degeneration. Eur J Neurosci 2006; 23: 1028-1034
  • 75 Barone I, Novelli E, Piano I. et al. Environmental enrichment extends photoreceptor survival and visual function in a mouse model of retinitis pigmentosa. PLoS One 2012; 7: e50726
  • 76 German OL, Insua MF, Gentili C. et al. Docosahexaenoic acid prevents apoptosis of retina photoreceptors by activating the ERK/MAPK pathway. J Neurochem 2006; 98: 1507-1520
  • 77 Komeima K, Rogers BS, Lu L. et al. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A 2006; 103: 11300-11305
  • 78 Smith RJ, Berlin CI, Hejtmancik JF. et al. Clinical diagnosis of the Usher syndromes. Usher Syndrome Consortium. Am J Med Genet 1994; 50: 32-38
  • 79 Rivolta C, Sweklo EA, Berson EL. et al. Missense mutation in the USH2A gene: association with recessive retinitis pigmentosa without hearing loss. Am J Hum Genet 2000; 66: 1975-1978
  • 80 Verbakel SK, van Huet RAC, Boon CJF. et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66: 157-186
  • 81 Estrada-Cuzcano A, Koenekoop RK, Senechal A. et al. BBS1 mutations in a wide spectrum of phenotypes ranging from nonsyndromic retinitis pigmentosa to Bardet-Biedl syndrome. Arch Ophthalmol 2012; 130: 1425-1432
  • 82 Mockel A, Perdomo Y, Stutzmann F. et al. Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies. Prog Retin Eye Res 2011; 30: 258-274
  • 83 den Hollander AI, Koenekoop RK, Yzer S. et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 2006; 79: 556-561
  • 84 Sayer JA, Otto EA, OʼToole JF. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 2006; 38: 674-681
  • 85 Valente EM, Silhavy JL, Brancati F. et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet 2006; 38: 623-625
  • 86 Frank V, den Hollander AI, Bruchle NO. et al. Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel-Gruber syndrome. Hum Mutat 2008; 29: 45-52
  • 87 Le Saux O, Martin L, Aherrahrou Z. et al. The molecular and physiological roles of ABCC6: more than meets the eye. Front Genet 2012; 3: 289
  • 88 Chinnery PF. Mitochondrial disease in adults: whatʼs old and whatʼs new?. EMBO Mol Med 2015; 7: 1503-1512
  • 89 de Laat P, Smeitink JAM, Janssen MCH. et al. Mitochondrial retinal dystrophy associated with the m.3243A>G mutation. Ophthalmology 2013; 120: 2684-2696
  • 90 Birtel J, Von Landenberg C, Gliem M. et al. Ophthalmol Retina 2021; DOI: 10.1016/j.oret.2021.02.017. [in press]
  • 91 Gorman GS, Chinnery PF, DiMauro S. et al. Mitochondrial diseases. Nat Rev Dis Primers 2016; 2: 16080
  • 92 Gliem M, Birtel J, Müller PL. et al. Acute Retinopathy in Pseudoxanthoma Elasticum. JAMA Ophthalmol 2019; 137: 1165-1173 doi:10.1001/jamaophthalmol.2019.2910
  • 93 Shah M, Shanks M, Packham E. et al. Next generation sequencing using phenotype-based panels for genetic testing in inherited retinal diseases. Ophthalmic Genet 2020; 41: 331-337
  • 94 Stone EM, Andorf JL, Whitmore SS. et al. Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease. Ophthalmology 2017; 124: 1314-1331
  • 95 Boulanger-Scemama E, El Shamieh S, Demontant V. et al. Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: mutation spectrum and new genotype-phenotype correlation. Orphanet J Rare Dis 2015; 10: 85
  • 96 Oishi M, Oishi A, Gotoh N. et al. Next-generation sequencing-based comprehensive molecular analysis of 43 Japanese patients with cone and cone-rod dystrophies. Mol Vis 2016; 22: 150-160
  • 97 Glockle N, Kohl S, Mohr J. et al. Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet 2014; 22: 99-104
  • 98 Bolz HJ. Genetische Diagnostik von Netzhautdystrophien. Ophthalmologe 2018; 115: 1028-1034 doi:10.1007/s00347-018-0762-5
  • 99 Bolz HJ. [Next-Generation Sequencing: A Quantum Leap in Ophthalmology Research and Diagnostics]. Klin Monbl Augenheilkd 2017; 234: 280-288
  • 100 Birtel J, Gliem M, Hess K. et al. Comprehensive Geno- and Phenotyping in a Complex Pedigree Including Four Different Inherited Retinal Dystrophies. Genes (Basel) 2020; 11: 137 doi:10.3390/genes11020137
  • 101 Yusuf IH, Birtel J, Shanks ME. et al. Clinical Characterization of Retinitis Pigmentosa Associated With Variants in SNRNP200. JAMA Ophthalmol 2019; 137: 1295-1300 doi:10.1001/jamaophthalmol.2019.3298
  • 102 Oishi M, Oishi A, Gotoh N. et al. Comprehensive molecular diagnosis of a large cohort of Japanese retinitis pigmentosa and Usher syndrome patients by next-generation sequencing. Invest Ophthalmol Vis Sci 2014; 55: 7369-7375
  • 103 Birtel J, Gliem M, Oishi A. et al. Genetic testing in patients with retinitis pigmentosa: Features of unsolved cases. Clin Exp Ophthalmol 2019; 47: 779-786
  • 104 Bravo-Gil N, Gonzalez-Del Pozo M, Martin-Sanchez M. et al. Unravelling the genetic basis of simplex Retinitis Pigmentosa cases. Sci Rep 2017; 7: 41937
  • 105 Preising MN, Gorg B, Friedburg C. et al. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration. FASEB J 2019; 33: 11507-11527
  • 106 Charbel Issa P, Barnard AR, Herrmann P. et al. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc Natl Acad Sci U S A 2015; 112: 8415-8420
  • 107 Scholl HP, Strauss RW, Singh MS. et al. Emerging therapies for inherited retinal degeneration. Sci Transl Med 2016; 8: 368rv6 doi:10.1126/scitranslmed.aaf2838
  • 108 Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C. et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med 2020; 26: 354-359
  • 109 Cehajic Kapetanovic J, McClements ME, Martinez-Fernandez de la Camara C. et al. Molecular Strategies for RPGR Gene Therapy. Genes (Basel) 2019; 10: 674
  • 110 Cehajic Kapetanovic J, Barnard AR, MacLaren RE. Molecular Therapies for Choroideremia. Genes (Basel) 2019; 10: 738
  • 111 MacLaren RE, Groppe M, Barnard AR. et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 2014; 383: 1129-1137