Zahnmedizin up2date, Inhaltsverzeichnis Zahnmedizin up2date 2021; 15(02): 131-144DOI: 10.1055/a-1387-4939 Zahnerhaltung, Prävention und Restauration Moderne Präventions- und Therapiekonzepte bei dentalen Erosionen – Bewertung therapeutischer Wirkstoffe Authors Nadine Schlüter Maxi Müller Benedikt Luka Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) Während vor einiger Zeit Erosionen – oder präziser erosiv induzierter Zahnverschleiß – in der zahnärztlichen Praxis eine untergeordnete Rolle spielten, zählen sie mittlerweile mit einer durchschnittlichen Prävalenz in den industrialisierten Staaten von 20 – 40% im bleibende Gebiss zu den häufigeren Erkrankungen der Zahnhartsubstanz [1]. Laut fünfter deutscher Mundgesundheitsstudie (DMS V) hatten in Deutschland etwa 45% der Erwachsenen und etwa 60% der Senioren bereits irgendeine Erosionserfahrung. Bei den 12-Jährigen waren es im Jahr 2014 auch schon circa 18%, was in etwa dem Prozentsatz der Personen mit Karieserfahrung entspricht [2] ([Abb. 1]). Volltext Referenzen Literatur 1 Schlueter N, Luka B. Erosive tooth wear – a review on global prevalence and on its prevalence in risk groups. Br Dent J 2018; 224: 364-370 2 Jordan R, Micheelis W. Fünfte Deutsche Mundgesundheitsstudie (DMS V). Köln: Deutscher Ärzte-Verlag; 2016. (Materialienreihe; Bd. 35) 3 Pindborg JJ. Pathology of the dental hard Tissues. Copenhagen: Munksgaard; 1970 4 Moazzez R, Bartlett D. Intrinsic causes of erosion. Monogr Oral Sci 2014; 25: 180-196 5 Barbour ME, Lussi A. Erosion in relation to nutrition and the environment. Monogr Oral Sci 2014; 25: 143-154 6 Cavadini C, Siega-Riz AM, Popkin BM. US adolescent food intake trends from 1965 to 1996. West J Med 2000; 173: 378-383 7 Max Rubner-Institut. Hrsg. Nationale Verzehrsstudie II; Ergebnisbericht, Teil 2. Karlsruhe; 2008. Im Internet (Stand: 03.05.2021): https://www.mri.bund.de/fileadmin/MRI/Institute/EV/NVSII_Abschlussbericht_Teil_2.pdf 8 Wiegand A, Schlueter N. The role of oral hygiene: does toothbrushing harm?. Monogr Oral Sci 2014; 25: 215-219 9 Schlueter N, Amaechi BT, Bartlett D. et al. Terminology of Erosive Tooth Wear: Consensus Report of a Workshop Organized by the ORCA and the Cariology Research Group of the IADR. Caries Res 2020; 54: 2-6 10 Ganss C, Lussi A, Schlueter N. The histological features and physical properties of eroded dental hard tissues. Monogr Oral Sci 2014; 25: 99-107 11 Lussi A, Hellwig E. Risk assessment and causal preventive measures. Monogr Oral Sci 2014; 25: 220-229 12 Saxegaard E, Rolla G. Kinetics of acquisition and loss of calcium fluoride by enamel in vivo. Caries Res 1989; 23: 406-411 13 Larsen MJ, Richards A. The influence of saliva on the formation of calcium fluoride-like material on human dental enamel. Caries Res 2001; 35: 57-60 14 Lussi A, Hellwig E. Erosive potential of oral care products. Caries Res 2001; 35 (Suppl.) 52-56 15 Rolla G, Ekstrand J. Fluoride in oral Fluids and dental Plaque. In: Fejerskov O, Ekstrand J, Burt BA. eds. Fluoride in Dentistry. Copenhagen: Munksgaard; 1996: 215-229 16 Koeser J, Carvalho TS, Pieles U. et al. Preparation and optimization of calcium fluoride particles for dental applications. J Mater Sci Mater Med 2014; 25: 1671-1677 17 Wiegand A, Bichsel D, Magalhaes AC. et al. Effect of sodium, amine and stannous fluoride at the same concentration and different pH on in vitro erosion. J Dent 2009; 37: 591-595 18 Schlueter N, Duran A, Klimek J. et al. Investigation of the effect of various fluoride compounds and preparations thereof on erosive tissue loss in enamel in vitro. Caries Res 2009; 43: 10-16 19 Zhang Y, Chong Y, Huang R. [Effect of topical iron, fluoride application on eroded enamel in vitro]. Shanghai Kou Qiang Yi Xue 2016; 25: 168-171 20 Gray JA. Acid dissolution rate of sound and white-spot enamel treated with tin(II) and fluoride compounds. J Dent Res 1965; 44: 493-501 21 Mühlemann HR, Schmid H. Orale Kompositionen mit stabilisierten Zinnsalzen. GABA Int. AG, Herausgeber. EuropPat. 1985; Nr. 0026539. 22 Ganss C, Schlueter N, Hardt M. et al. Effect of fluoride compounds on enamel erosion in vitro- a comparison of amine, sodium and stannous fluoride. Caries Res 2008; 42: 2-7 23 Babcock FD, King JC, Jordan TH. The reaction of stannous fluoride and hydroxyapatite. J Dent Res 1978; 57: 933-938 24 Wegehaupt FJ, Taubock TT, Sener B. et al. Retention of KOH-soluble fluoride formed after application of a SnCl(2)/AmF/NaF containing mouth rinse under erosive conditions. Acta Odontol Scand 2012; 70: 272-278 25 Schlueter N, Hardt M, Lussi A. et al. Tin-containing fluoride solutions as anti-erosive agents in enamel: an in vitro tin-uptake, tissue-loss, and scanning electron micrograph study. Eur J Oral Sci 2009; 117: 427-434 26 Wiegand A, Bliggenstorfer S, Magalhaes AC. et al. Impact of the in situ formed salivary pellicle on enamel and dentine erosion induced by different acids. Acta Odontol Scand 2008; 66: 225-230 27 Kensche A, Buschbeck E, König B. et al. Effect of fluoride mouthrinses and stannous ions on the erosion protective properties of the in situ pellicle. Sci Rep 2019; 9: 5336 28 Algarni AA, Mussi MCM, Moffa EB. et al. The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention. PLoS One 2015; 10: e0128196 29 Ganss C, Neutard L, von Hinckeldey J. et al. Efficacy of a tin/fluoride rinse: a randomized in situ trial on erosion. J Dent Res 2010; 89: 1214-1218 30 Schlueter N, Klimek J, Ganss C. Randomised in situ study on the efficacy of a tin/chitosan toothpaste on erosive-abrasive enamel loss. Caries Res 2013; 47: 574-581 31 Frese C, Wohlrab T, Sheng L. et al. Clinical management and prevention of dental caries in athletes: A four-year randomized controlled clinical trial. Sci Rep 2018; 8: 16991 32 Anderson AC, Al-Ahmad A, Schlueter N. et al. Influence of the long-term use of oral hygiene products containing stannous ions on the salivary microbiome – a randomized controlled trial. Sci Rep 2020; 10: 9546 33 Busscher HJ, White DJ, van der Mei HC. et al. Hexametaphosphate effects on tooth surface conditioning film chemistry-in vitro and in vivo studies. J Clin Dent 2002; 13: 38-43 34 do Amaral JG, Delbem ACB, Pessan JP. et al. Effects of polyphosphates and fluoride on hydroxyapatite dissolution: A pH-stat investigation. Arch Oral Biol 2016; 63: 40-46 35 Danelon M, Pessan JP, Santos VRD. et al. Fluoride toothpastes containing micrometric or nano-sized sodium trimetaphosphate reduce enamel erosion in vitro. Acta Odontol Scand 2018; 76: 119-124 36 Scaramucci T, João-Souza SH, Lippert F. et al. Influence of Toothbrushing on the Antierosive Effect of Film-Forming Agents. Caries Res 2016; 50: 104-110 37 Barlow AP, Sufi F, Mason SC. Evaluation of different fluoridated dentifrice formulations using an in situ erosion remineralization model. J Clin Dent 2009; 20: 192-198 38 Schlueter N, Lussi A, Tolle A. et al. Effects of Erosion Protocol Design on Erosion/Abrasion Study Outcome and on Active Agent (NaF and SnF2) Efficacy. Caries Res 2016; 50: 170-179 39 João-Souza SH, Bezerra SJC, de Freitas PM. et al. In situ evaluation of fluoride-, stannous- and polyphosphate-containing solutions against enamel erosion. J Dent 2017; 63: 30-35 40 Creeth JE, Parkinson CR, Burnett GR. et al. Effects of a sodium fluoride- and phytate-containing dentifrice on remineralisation of enamel erosive lesions-an in situ randomised clinical study. Clin Oral Investig 2018; 22: 2543-2552 41 Fakhri E, Eslami H, Maroufi P. et al. Chitosan biomaterials application in dentistry. Int J Biol Macromol 2020; 162: 956-974 42 Guo C, Gemeinhart RA. Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles. EurJ Pharm Biopharm 2008; 70: 597-604 43 Lee HS, Tsai S, Kuo CC. et al. Chitosan adsorption on hydroxyapatite and its role in preventing acid erosion. J Colloid Interface Sci 2012; 385: 235-243 44 Ganss C, Lussi A, Grunau O. et al. Conventional and anti-erosion fluoride toothpastes: effect on enamel erosion and erosion-abrasion. Caries Res 2011; 45: 581-589 45 Arnaud TM, Neto BD, Diniz FB. Chitosan effect on dental enamel de-remineralization: An in vitro evaluation. J Dent 2010; 38: 848-852 46 Pini NIP, Lima DANL, Lovadino JR. et al. In vitro Efficacy of Experimental Chitosan-Containing Solutions as Anti-Erosive Agents in Enamel. Caries Res 2016; 50: 337-345 47 Ganss C, von Hinckeldey J, Tolle A. et al. Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion. J Dent 2012; 48 Cheaib Z, Lussi A. Impact of acquired enamel pellicle modification on initial dental erosion. Caries Res 2011; 45: 107-112 49 Gracia LH, Brown A, Rees GD. et al. Studies on a novel combination polymer system: in vitro erosion prevention and promotion of fluoride uptake in human enamel. J Dent 2010; 38 Suppl 3: S4-S11 50 Hemingway CA, Shellis RP, Parker DM. et al. Inhibition of hydroxyapatite dissolution by ovalbumin as a function of pH, calcium concentration, protein concentration and acid type. Caries Res 2008; 42: 348-353 51 White AJ, Gracia LH, Barbour ME. Inhibition of dental erosion by casein and casein-derived proteins. Caries Res 2011; 45: 13-20 52 Ganss C, Marten J, Hara AT. et al. Toothpastes and enamel erosion/abrasion – Impact of active ingredients and the particulate fraction. J Dent 2016; 54: 62-67 53 Carvalho TS, Colon P, Ganss C. et al. Consensus report of the European Federation of Conservative Dentistry: erosive tooth wear-diagnosis and management. Clin Oral Investig 2015; 19: 1557-1561 54 Reynolds EC, Riley PF, Storey E. Phosphoprotein inhibition of hydroxyapatite dissolution. Calcif Tissue Int 1982; 34 Suppl 2: S52-S56 55 Srinivasan N, Kavitha M, Loganathan SC. Comparison of the remineralization potential of CPP-ACP and CPP-ACP with 900 ppm fluoride on eroded human enamel: An in situ study. Arch Oral Biol 2010; 55: 541-544 56 Wegehaupt FJ, Attin T. The role of fluoride and casein phosphopeptide/amorphous calcium phosphate in the prevention of erosive/abrasive wear in an in vitro model using hydrochloric acid. Caries Res 2010; 44: 358-363 57 Wiegand A, Attin T. Randomised in situ trial on the effect of milk and CPP-ACP on dental erosion. J Dent 2014; 42: 1210-1215 58 Wang X, Megert B, Hellwig E. et al. Preventing erosion with novel agents. J Dent 2011; 39: 163-170 59 Attin T, Buchalla W, Putz B. In vitro evaluation of different remineralization periods in improving the resistance of previously eroded bovine dentine against tooth-brushing abrasion. Arch Oral Biol 2001; 46: 871-874 60 Ganss C, Schlueter N, Friedrich D. et al. Efficacy of waiting periods and topical fluoride treatment on toothbrush abrasion of eroded enamel in situ. Caries Res 2007; 41: 146-151 61 Lussi A, Lussi J, Carvalho TS. et al. Toothbrushing after an erosive attack: will waiting avoid tooth wear?. Eur J Oral Sci 2014; 122: 353-359 62 Hong D-W, Lin X-J, Wiegand A. et al. Does delayed toothbrushing after the consumption of erosive foodstuffs or beverages decrease erosive tooth wear? A systematic review and meta-analysis. Clin Oral Investig 2020; 24: 4169-4183 63 Lussi A, Buzalaf MAR, Duangthip D. et al. The use of fluoride for the prevention of dental erosion and erosive tooth wear in children and adolescents. Eur Arch Paediatr Dent 2019; 20: 517-527 64 Addy M, Hunter ML. Can tooth brushing damage your health? Effects on oral and dental tissues. Int Dent J 2003; 53 Suppl 3: 177-186 65 Sundaram G, Wilson R, Watson TF. et al. Effect of resin coating on dentine compared to repeated topical applications of fluoride mouthwash after an abrasion and erosion wear regime. J Dent 2007; 35: 814-818 66 Sundaram G, Wilson R, Watson TF. et al. Clinical measurement of palatal tooth wear following coating by a resin sealing system. Oper Dent 2007; 32: 539-543 67 Bartlett D, Sundaram G, Moazzez R. Trial of protective effect of fissure sealants, in vivo, on the palatal surfaces of anterior teeth, in patients suffering from erosion. J Dent 2011; 39: 26-29 68 Zimmerli B, De Munck J, Lussi A. et al. Long-term bonding to eroded dentin requires superficial bur preparation. Clin Oral Investig 2012; 16: 1451-1461 69 Peumans M, De Munck J, Mine A. et al. Clinical effectiveness of contemporary adhesives for the restoration of non-carious cervical lesions. A systematic review. Dent Mater 2014; 30: 1089-1103 70 Cvikl B, Lussi A, Carvalho TS. et al. Stannous chloride and stannous fluoride are inhibitors of matrix metalloproteinases. J Dent 2018; 78: 51-58 71 Schlueter N, Peutzfeldt A, Ganss C. et al. Does tin pre-treatment enhance the bond strength of adhesive systems to enamel?. J Dent 2013; 41: 642-652 72 Peutzfeldt A, Koch T, Ganss C. et al. Effect of tin-chloride pretreatment on bond strength of two adhesive systems to dentin. Clin Oral Investig 2014; 18: 535-543 73 Van Meerbeek B, Yoshihara K, Yoshida Y. et al. State of the art of self-etch adhesives. Dent Mater 2011; 27: 17-28 74 Ganss C, Lussi A, Peutzfeldt A. et al. Impact of Sn/F Pre-Treatments on the Durability of Protective Coatings against Dentine Erosion/Abrasion. PLoS One 2015; 10: e0123889 75 Schlüter N, Gressbach C, Ziemann C. et al. Kompositbasierte Beschichtungen zur Prävention von Dentinerosionen. DZZ 2014; 69: 564-572 76 Shellis RP, Featherstone JD, Lussi A. Understanding the chemistry of dental erosion. Monogr Oral Sci 2014; 25: 163-179 77 West NX, Hughes JA, Parker DM. et al. Development and evaluation of a low erosive blackcurrant juice drink 2. Comparison with a conventional blackcurrant juice drink and orange juice. J Dent 1999; 27: 341-344 78 Hughes JA, West NX, Parker DM. et al. Development and evaluation of a low erosive blackcurrant juice drink in vitro and in situ – 1. Comparison with orange juice. J Dent 1999; 27: 285-289 79 Hughes JA, West NX, Parker DM. et al. Development and evaluation of a low erosive blackcurrant juice drink 3. Final drink and concentrate, formulae comparisons in situ and overview of the concept. J Dent 1999; 27: 345-350 80 Barbour ME, Parker DM, Jandt KD. Enamel dissolution as a function of solution degree of saturation with respect to hydroxyapatite: a nanoindentation study. J Colloid Interface Sci 2003; 265: 9-14 81 Lussi A, Megert B, Shellis RP. et al. Analysis of the erosive effect of different dietary substances and medications. Br J Nutr 2012; 107: 252-262 82 Barbour ME, Shellis RP, Parker DM. et al. An investigation of some food-approved polymers as agents to inhibit hydroxyapatite dissolution. Eur J Oral Sci 2005; 113: 457-461 83 Barbour ME, Shellis RP, Parker DM. et al. Inhibition of hydroxyapatite dissolution by whole casein: the effects of pH, protein concentration, calcium, and ionic strength. Eur J Oral Sci 2008; 116: 473-478 84 Ramalingam L, Messer LB, Reynolds EC. Adding casein phosphopeptide-amorphous calcium phosphate to sports drinks to eliminate in vitro erosion. Pediatr Dent 2005; 27: 61-67 85 Larsen MJ, Richards A. Fluoride is unable to reduce dental erosion from soft drinks. Caries Res 2002; 36: 75-80 86 Chunmuang S, Jitpukdeebodintra S, Chuenarrom C, Benjakul P. Effect of xylitol and fluoride on enamel erosion in vitro. J Oral Sci 2007; 49: 293-297 87 Amaechi BT, Higham SM, Edgar WM. The influence of xylitol and fluoride on dental erosion in vitro. Arch Oral Biol 1998; 43: 157-161