RSS-Feed abonnieren
DOI: 10.1055/a-1382-2812
Die Bedeutung des Elementes Barium in der Nuklearmedizin
The Importance of the Element Barium in Nuclear Medicine
Zusammenfassung
Von Erdalkalimetallionen außer Beryllium ist bekannt, dass sie ein calcimimetisches Verhalten zeigen. Damit ist ihr Schicksal in vivo vorgezeichnet, das in einem beträchtlichen Maße durch den Einbau in Knochengewebe, welches zum Hauptteil aus Hydroxylapatit besteht, charakterisiert ist. In diesem Sinne wurde auch die Verwendung von Radionukliden dieser Elemente als Knochensucher forciert. Mit Ausnahme von Beryllium und Magnesium wurden Tierexperimente und Humananwendungen mit Radionukliden von Calcium, Strontium, Barium und Radium durchgeführt, wobei bis heute lediglich Strontium und Radium, in der Hauptsache als Therapienuklide zur palliativen Behandlung von Knochenmetastasen, Eingang in nuklearmedizinische Routineanwendungen gefunden haben. In diesem Übersichtsartikel werden die Radionuklide des Bariums vorgestellt, sowie deren Herstellung und Verwendung. Aktuelle Forschungsergebnisse mit Radionukliden des Bariums in Radiopharmazie und Nuklearmedizin werden präsentiert.
Abstract
The calcimimetic behavior is well known from all alkaline earth metal ions except beryllium. This special characteristic is the reason for their biodistribution which consists of a high incorporation into the bones, based on hydroxyapatite. In this regard, the main application of these radionuclides is based on bone seekers. With exception of the lightest elements beryllium and magnesium, animal experiments and human applications were executed in the past with radionuclides of calcium, strontium, barium, and radium. Today, therapy nuclides of strontium and radium are applied routinely for palliative treatment of bone metastases. This review is focussed on the presentation of barium radionuclides, their preparation and the development of applications in nuclear medicine and radiopharmacy.
Publikationsverlauf
Artikel online veröffentlicht:
10. Juni 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Chakravarty R, Dash A, Pillai MR. Availability of Yttrium-90 from Strontium-90: a Nuclear Medicine Perspective. Cancer Biother Radiopharm 2012; 27: 621-641
- 2 Braun J, Lemmel EM, Manger B. et al. Therapie der ankylosierenden Spondylitis (AS) mit Radiumchlorid (224SpondylAT®). Z Rheumatol 2001; 60: 74-83
- 3 Wick RR, Nekolla EA, Gaubitz M. et al. Increased risk of myeloid leukaemia in patients with ankylosing spondylitis following treatment with radium-224. Rheumatology 2008; 47: 855-859
- 4 Confino H, Hochman I, Efrati M. et al. Tumor ablation by intratumoral Ra-224-loaded wires induces anti-tumor immunity against experimental metastatic tumors. Cancer Immunol Immunother 2015; 64: 191-199
- 5 Popovtzer A, Rosenfeld E, Mizrachy A. et al. Diffusing Alpha Emitters Radiation Therapy (DART) Brachytherapy for Recurrent and Radio-Resistant Head and Neck and Skin Cancer: A New Treatment Concept. Brachytherapy 2019; 18: S38
- 6 Deshayes E, Roumiguie M, Thibault C. et al. Radium 223 dichloride for prostate cancer treatment. Drug Des Devel Ther 2017; 11: 2643-2651
- 7 Reissig F, Bauer D, Ullrich M. et al. Recent Insights in Barium-131 as a Diagnostic Match for Radium-223: Cyclotron Production, Separation, Radiolabeling, and Imaging. Pharmaceuticals 2020; 13: 272
- 8 Wiberg N, Holleman A, Wiberg E. Lehrbuch der Anorganischen Chemie. 102. Aufl. Berlin, New York: de Gryter; 2007: 1236-1239
- 9 Meyer RJ, Pietsch EHE, Kotowski A. et al. Gmelins Handbuch der Anorganischen Chemie. 8. Aufl. Band 30 (Barium Ergänzungsband). Weinheim: Verlag Chemie; 1960
- 10 Foerst W. Ullmanns Encyklopädie der technischen Chemie Bd.4. 3. Aufl. München: Urban & Schwarzenberg; 1953: 171 ff
- 11 Kuvvetli P. Röntgenkontrastmittel. Becht S, Bittner RC, Ohmstede A, Pfeiffer A, Roßdeutscher R. Lehrbuch der radiologischen Einstelltechnik. Berlin, Heidelberg: Springer; 2019: 681-685
- 12 Thomsen H, Webb JAW. Contrast Media, Safety Issues and ESUR Guidelines. Berlin, Heidelberg: Springer-Verlag; 2014.
- 13 Brigelius-Flohé R, Petrides P. Essentielle Spurenelemente. Heinrich P, Müller M, Graeve L. Löffler/Petrides Biochemie und Pathobiochemie. Berlin, Heidelberg: Springer; 2014.
- 14 Schroeder HA, Tipton IH, Nason AP. Trace metals in man: strontium and barium. J Chronic Dis 1972; 25: 491-517
- 15 U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Barium. Verfügbar unter (28.01.2021): www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=327&tid=57
- 16 Diengott D, Rozsa O, Levy N. et al. Hypokalemia in barium poisoning. Lancet 1964; 2: 343-344
- 17 Gould DB, Sorrell MR, Lupariello AD. Barium sulfide poisoning: Some factors contributing to survival. Arch Intern Med 1973; 132: 891-894
- 18 Ghose A, Sayeed AA, Hossain A. et al. Mass barium carbonate poisoning with fatal outcome, lessons learned: a case series. Cases J 2009; 2: 9327
- 19 Sunderman DN, Townley CW. The Radiochemistry of Barium, Calcium, and Strontium. Washington, DC: The National Academies Press; 1960.
- 20 Baur GCH, Carlsson A, Lindquist B. Metabolism of Ba140 in man. Acta Orthop Scand 1957; 26: 241-254
- 21 Baur GCH, Carlsson A, Lindquist B. A comparative study on the metabolism of 140Ba and 45Ca in rats. Biochem J 1956; 63: 535-542
- 22 Bligh PH, Taylor DM. Comparative studies of the metabolism of strontium and barium in the rat. Biochem J 1963; 87: 612-618
- 23 Taylor DM, Bligh PH, Duggan MH. The absorption of calcium, strontium, barium and radium from the gastrointestinal tract of the rat. Biochem J 1962; 83: 25-29
- 24 Garner RJ, Jones HG, Sansom BF. Fission products and the dairy cow. 2. Some aspects of the metabolism of the alkaline-earth elements calcium, strontium and barium-140. Biochem J 1960; 76: 572-579
- 25 Pinajian JJ. A cesium-137-barium-137m isotope generator. J Chem Educ 1967; 44: 212
- 26 Castronovo Jr FP , Reba RC, Wagner Jr HN . System for sustained intravenous infusion of a sterile solution of 137mBa-ethylenediaminetetraacetic acid (EDTA). J Nucl Med 1969; 10: 242-245
- 27 Spencer RP, Lange RC, Treves S. 135mBa and 131Ba as bone scanning agents. J Nucl Med 1970; 11: 340-341
- 28 Hosain F, Syed IB, Wagner Jr HN . et al. Ionic barium 135m: a new agent for bone scanning. Radiology 1971; 98: 684-686
- 29 Syed IB, Hosain F. Specific gamma-ray and equilibrium absorbed-dose constants for barium-135m. J Nucl Med 1971; 12: 630-631
- 30 Syed IB, Hosain F, Wagner Jr HN . Development of barium-135m radiopharmaceutical for skeletal imaging. Nucl Med (Stuttg) 1972; 11: 291-301
- 31 Spencer RP, Lange RC, Treves S. Use of 135mBa and 131Ba as bone-scanning agents. J Nucl Med 1971; 12: 216-221
- 32 Domanski TM, Depczyk D, Liniecki J. A test of th theory of alkaline earth metabolism by the behaviour of 133Ba in rats. Phys Med Biol 1966; 11: 461-470
- 33 Lange RC, Spencer RP. Feasibility of 133mBa as a bone scanning agent. J Nucl Med 1972; 13: 342-343
- 34 Thomas RG, Ewing WC, Catron DL. et al. In vivo solubility of four forms of barium determined by scanning techniques. Am Ind Hyg Assoc J 1973; 34: 350-359
- 35 Moran BJ, Rice SR, Chhabra AM. et al. Long-term biochemical outcomes using cesium-131 in prostate brachytherapy. Brachytherapy 2019; 18: 800-805
- 36 Moran BJ, Braccioforte MH. Cesium-131 prostate prachytherapy: An early experience. Brachytherapy 2007; 6: 80
- 37 Mahlstedt J, Prignitz I, Joseph K. [Barium 131 – a new nuclide for bone scintigraphy. First clinical results]. Strahlentherapie Sonderb 1972; 72: 402-406
- 38 Spencer RP, Lange RC, Treves S. 131Ba: an intermediate-lived radionuclide for bone scanning. J Nucl Med 1970; 11: 95-96
- 39 Tárkányi F, Hermanne A, Takács S. et al. New measurements and evaluation of excitation functions for (p,xn), (p,pxn) and (p,2pxn) reactions on 133Cs up to 70MeV proton energy. Appl Radiat Isot 2010; 68: 47-58
- 40 Reissig F, Hübner R, Steinbach J. et al. Facile Preparation of radium-doped, functionalized nanoparticles as carriers for targeted alpha therapy. Inorg Chem Front 2019; 6: 1341-1349
- 41 Reissig F, Zarschler K, Hübner R. et al. Sub-10 nm Radiolabeled Barium Sulfate Nanoparticles as Carriers for Theranostic Applications and Targeted Alpha Therapy. ChemistryOpen 2020; 9: 797-805
- 42 Thiele NA, MacMillan SN, Wilson JJ. Rapid Dissolution of BaSO4 by Macropa, an 18-Membered Macrocycle with High Affinity for Ba2+. J Am Chem Soc 2018; 140: 17071-17078