Drug Res (Stuttg) 2021; 71(06): 326-334
DOI: 10.1055/a-1381-6579
Original Article

Population Pharmacokinetic Analysis of Fevipiprant in Healthy Subjects and Asthma Patients using a Tukey’s g-and-h Distribution

1   Biostatistics & Pharmacometrics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
,
Christian Bartels
2   Biostatistics & Pharmacometrics, Novartis Pharma AG, Basel, Switzerland
,
Swarupa Kulkarni
3   PK Science, Novartis Pharmaceutics Corporation, East Hanover, NJ, USA
,
Ramachandra Sangana
4   PK Science, Novartis Institutes for Biomedical Research, Hyderabad, India
,
Monish Jain
5   PK Science, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
,
Julia Zack
3   PK Science, Novartis Pharmaceutics Corporation, East Hanover, NJ, USA
,
Jing Yu
1   Biostatistics & Pharmacometrics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
› Institutsangaben

Abstract

Aim The objective of this analysis was to characterize the population pharmacokinetics (PK) of fevipiprant in asthma patients and to evaluate the effect of baseline covariates on the PK of fevipiprant.

Methods PK data from 1281 healthy subjects or asthma patients were available after single or once daily dosing of fevipiprant. Population PK analysis was conducted to describe fevipiprant plasma concentration data using a non-linear mixed effect modeling approach.

Results Fevipiprant PK was described by a two-compartment model with first-order absorption and first-order elimination. Exploration of fevipiprant PK in the population from the phase III studies revealed an over-dispersed and skewed distribution. This unusual distribution was described using Tukey’s g-and-h distribution (TGH) on the between-subject variability of apparent clearance (CL/F). The model identified a significant impact of disease status on CL/F, with the value in healthy subjects being 62% higher than that in asthma patients. Bodyweight, age and renal function showed statistically significant impact on fevipiprant clearance; however, compared with a typical asthma patient, the simulated difference in steady-state exposure was at most 16%.

Conclusion Fevipiprant PK was described by a two-compartment model with first-order absorption and first-order elimination. The TGH distribution was appropriate to describe the over-dispersed and skewed PK data as observed in the current studies. Asthma patients had approximately 37% higher exposure than healthy subjects did. Other covariates changed exposure by at most 16%.

Supplementary Material



Publikationsverlauf

Eingereicht: 12. Oktober 2020

Angenommen: 29. Januar 2021

Artikel online veröffentlicht:
05. März 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 2012; 18: 716-725 https://doi.org/10.1038/nm.2678
  • 2 Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy 2019; 75: 761-768 https://doi.org/10.1111/all.14001
  • 3 Domingo C, Palomares O, Sandham DA. et al. The prostaglandin D2 receptor 2 pathway in asthma: a key player in airway inflammation.. Respir Res 2018; 19: 189 DOI: 10.1186/s12931-018-0893-x.
  • 4 Santus P, Radovanovic D. Prostaglandin D2 receptor antagonists in early development as potential therapeutic options for asthma. Expert Opin Investig Drugs 2016; 25: 1083-1092 https://doi.org/10.1080/13543784.2016.1212838
  • 5 Saunders R, Kaul H, Berair R. et al. DP2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment. Sci Transl Med 2019; 11: eaao6451 DOI: 10.1126/scitranslmed.aao6451.
  • 6 Sykes DA, Bradley ME, Riddy DM. et al. Fevipiprant (QAW039), a Slowly Dissociating CRTh2 Antagonist with the Potential for Improved Clinical Efficacy. Mol Pharmacol 2016; 89: 593-605 DOI: 10.1124/mol.115.101832.
  • 7 White C, Wright A, Brightling C. Fevipiprant in the treatment of asthma. Expert Opin Investig Drugs 2018; 27: 199-207 https://doi.org/10.1080/13543784.2018.1432592
  • 8 Gonem S, Berair R, Singapuri A. et al. Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet. Respir Med 2016; 4: 699-707 DOI: 10.1016/S2213-2600(16)30179-5.
  • 9 Bateman ED, Guerreros AG, Brockhaus F. et al. Fevipiprant, an oral prostaglandin DP2 receptor (CRTh2) antagonist, in allergic asthma uncontrolled on low-dose inhaled corticosteroids. Eur Respir J 2017; 50: 1700670 DOI: 10.1183/13993003.00670-2017.
  • 10 Brightling CE, Bleecker ER, Erpenbeck VJ. et al. LUSTER-1 and -2: Two randomized controlled trials of the prostaglandin D2. receptor 2 antagonist, fevipiprant, in asthma. Clin Investig (Lond) 2019; 9: 55-63
  • 11 Brightling CE, Gaga M, Inoue H. et al. Effectiveness of fevipiprant in reducing exacerbations in patients with severe asthma (LUSTER-1 and LUSTER-2): two phase 3 randomised controlled trials. Lancet. Respir Med 2020; DOI: 10.1016/S2213-2600(20)30412-4.
  • 12 Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development—Part 2: Introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol 2013; 2: e38 https://doi.org/10.1038/psp.2013.14
  • 13 Yan Y, Genton MG. The Tukey g-and-h distribution. Significance 2019; 16: 12-13 https://doi.org/10.1111/j.1740-9713.2019.01273.x
  • 14 Ahn JE, Karlsson MO, Dunne A. et al. Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn 2008; 35: 401-421 DOI: 10.1007/s10928-008-9094-4.
  • 15 Bauer RJ. NONMEM Guide: Introduction to NONMEM 7.3.0. Gathersburg. Maryland: ICON plc; 2015
  • 16 Lindbom L, Pihlgren P, Jonsson N. PsN-Toolkit—A collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 2005; 79: 241-257 https://doi.org/10.1016/j.cmpb.2005.04.005
  • 17 Core Team R. R: A Language and Environment for Statistical Computing. 2017
  • 18 Bonate PJ. Pharmacokinetic-pharmacodynamic Modeling and Simulation. Second edi New York: Springer US; 2011
  • 19 Wang Y, Moss J, Thisted R. Predictors of body surface area. J Clin Anesth 1992; 4: 4-10 https://doi.org/10.1016/0952-8180(92)90111-D
  • 20 Byon W, Smith MK, Chan P. et al. Establishing best practices and guidance in population modeling: An experience with an internal population pharmacokinetic analysis guidance. CPT Pharmacometrics Syst Pharmacol 2013; 2: e51 DOI: 10.1038/psp.2013.26.
  • 21 Åsberg A, Bjerre A, Almaas R. et al. Measured GFR by utilizing population pharmacokinetic methods to determine iohexol clearance. Kidney Int Reports 2020; 5: 189-198 DOI: 10.1016/j.ekir.2019.11.012.
  • 22 European Medicines Agency. Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with decreased renal function 2015
  • 23 Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther 2007; 82: 17-20 https://doi.org/10.1038/sj.clpt.6100241
  • 24 Xu G, Genton MG. Tukey g-and-h random fields. J Am Stat Assoc 2017; 112: 1236-1249 https://doi.org/10.1080/01621459.2016.1205501
  • 25 Bauer RJ. NONMEM tutorial Part II: Estimation methods and advanced examples.. CPT Pharmacometrics Syst Pharmacol 2019; 8: 538-556 https://doi.org/10.1002/psp4.12422
  • 26 Sjöswärd KN, Josefsson M, Ahlner J. et al. Metabolism of salbutamol differs between asthmatic patients and healthy volunteers. Pharmacol Toxicol 2003; 92: 27-32 DOI: 10.1034/j.1600-0773.2003.920105.x.
  • 27 Di L, Kerns EH. Transporters. In Di L, Kerns E. Drug-Like Properties Concepts, Structure Design and Methods from ADME to Toxicity Optimization. Boston: Academic Press; 2016: 113-140
  • 28 Benard A, Desreumeaux P, Huglo D. et al. Increased intestinal permeability in bronchial asthma. J Allergy Clin Immunol 1996; 97: 1173-1178 DOI: 10.1016/S0091-6749(96)70181-1.
  • 29 Hijazi Z, Molla AM, Al-Habashi H. et al. Intestinal permeability is increased in bronchial asthma. Arch Dis Child 2004; 89: 227 LP-229 DOI: 10.1136/adc.2003.027680.
  • 30 Pearson D, Weiss HM, Jin Y. et al. Absorption, distribution, metabolism, and excretion of the oral prostaglandin D2 receptor 2 antagonist fevipiprant (QAW039) in healthy volunteers and in vitro. Drug Metab Dispos 2017; 45: 817-825 DOI: 10.1124/dmd.117.075358.
  • 31 Aguiar JA, Tamminga A, Lobb B. et al. The impact of cigarette smoke exposure, COPD, or asthma status on ABC transporter gene expression in human airway epithelial cells. Sci Rep 2019; 9: 153 DOI: 10.1038/s41598-018-36248-9.
  • 32 Upton RA. Pharmacokinetic interactions between theophylline and other medication (Part I). Clin Pharmacokinet 1991; 20: 66-80 DOI: 10.2165/00003088-199120010-00005.
  • 33 Anglicheau D, Flamant M, Schlageter MH. et al. Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant 2003; 18: 2409-2414 DOI: 10.1093/ndt/gfg381.