Laryngorhinootologie 2021; 100(04): 252-258
DOI: 10.1055/a-1372-3270
Leitlinien und Empfehlungen

Allergische Reaktionen auf COVID-19-Impfungen – Was HNO-Ärzte wissen sollten – Teil 1: Allgemeine Aspekte von Allergien auf Impfstoffe, immunologische Grundlagen von Allergien auf Impfstoffe, Immunmechanismen von allergischen und pseudoallergischen Reaktionen; Teil 2: Charakteristiken der mRNA-Impfstoffe BNT162b2 und mRNA-1273 zur Prophylaxe von COVID-19, weitere Impfstoff-Kandidaten und assoziierte Immunphänomene; Teil 3: Praktische Aspekte der Prophylaxe, Diagnostik und Therapie von Allergien auf COVID-19-Impfstoffe

L. Klimek
1   Zentrum für Rhinologie und Allergologie, Wiesbaden
,
A. M. Chaker
2   Klinik für Hals-, Nasen- und Ohrenheilkunde & Zentrum für Allergie und Umwelt, Klinikum rechts der Isar, TU München
,
M. Cuevas
3   Klinik für Hals-, Nasen- und Ohrenheilkunde, TU Dresden
› Author Affiliations

Zusammenfassung

Impfungen sind der Goldstandard zur Prophylaxe gefährlicher Infektionserkrankungen. Innerhalb weniger als 12 Monaten seit Entschlüsselung der kodierenden RNA-Sequenzen von SARS-CoV-2 wurden bereits 2 RNA-Impfstoffe gegen COVID-19 in wesentlichen Teilen der Welt zugelassen und seit Dezember 2020 eingesetzt. Der Herausforderung durch eine beispiellose globale Pandemie folgte in bisherig einmaliger Art und Weise der Zusammenarbeit und koordinierten Antwort die Entwicklung verschiedener Impfstoffe basierend auf unterschiedlichen Technologieplattformen. In diesem Artikel werden die verschiedenen Charakteristiken der in Prüfung befindlichen sowie bereits zugelassenen Impfstoffe dargestellt und erklärt, z. B. Subunit-Impfstoffe, inaktivierte Vollimpfstoffe, abgeschwächte Lebendimpfstoffe und Virus-like-Particle (VLP) -Impfstoffe. Die neuartigen rekombinanten Impfstoffstrategien basierend auf adenoviralen Vektoren sowie die durch die schnelle Entwicklung und erstmalige Zulassung in den Fokus gerückten RNA-Impfstoffe sowie ihre Biologie und Pharmakologie werden erläutert. Allergische Reaktionen gegen diese Impfstoffe und Bestandteile existieren, sind aber selten. Immunreaktionen sowie Nebenwirkungen sollten gut dokumentiert werden. In seltenen Fällen einer vermuteten Allergie gegen Impfstoffbestandteile, vor allem gegen PEGs, ist eine präemptive Hauttestung möglich. Die Entwicklung innovativer Impfstofftechnologien und antiviraler Medikamente ist von strategischer Bedeutung im Sinne einer zukünftigen „pandemic preparedness“.

Abstract

Vaccinations are the gold-standard in order to prevent dangerous infectious diseases. Within 12 months since the RNA sequence of SARS-COV2 has been published already two RNA vaccines against COVID-19 have been licensed and are broadly used in many relevant parts of the world. Matching the challenge of an unprecedented global pandemic unique collaborative approaches have made available several vaccines based on a variety of technological platforms that are under current development. This article explains the characteristics, biology and pharmacology of subunit-vaccines, inactivated and attenuated vaccines, Virus-like-Particle vaccines, recombinant strategies based on adenoviral vectors and newly developed and first time in human licensed RNA-vaccines that came into scope recently. Allergic reactions against the vaccine and its components have been reported but are yet uncommon, however need good documentation such as other side-effects and immune-phenomena. In rare cases where allergy against vaccine components such as PEGs is considered, such PEGs can be tested using a skin-prick test. Development of innovative vaccine technology and antiviral medication is of strategic relevance in the best sense of “pandemic preparedness” for the future.



Publication History

Article published online:
01 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Slaoui M, Hepburn M. Developing Safe and Effective Covid Vaccines – Operation Warp Speed's Strategy and Approach. The New England journal of medicine 2020; 383: 1701-1703 . doi:10.1056/NEJMp2027405. doi:59650 de-38m
  • 2 FDA. United States Food and Drug Administration (FDA). Emergency use authorization for Moderna COVIC-19 vaccine. 2020
  • 3 FDA. United States Food and Drug Administration (FDA). Emergency use authorization for Pfizer-BioNTech COVID‑19 Vaccine. 2020
  • 4 WHO. Draft landscape of COVID-19 candidate vaccines. 2020
  • 5 Krammer F. SARS-CoV-2 vaccines in development. Nature 2020; 586: 516-527 . doi:10.1038/s41586-020-2798-3
  • 6 Rodriguez Coira J, Sokolowska M. SARS-CoV-2 candidate vaccines – composition, mechanisms of action and stages of clinical development. Allergy 2020; DOI: 10.1111/all.14714.
  • 7 Burns CC, Diop OM, Sutter RW. et al Vaccine-derived polioviruses. The Journal of infectious diseases 2014; 210 (Suppl. 01) S283-293 . doi:10.1093/infdis/jiu295
  • 8 Folegatti PM, Ewer KJ, Aley PK. et al Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet (London, England) 2020; 396: 467-478 . doi:10.1016/S0140-6736(20)31604-4
  • 9 Sadoff J, Le Gars M, Shukarev G. et al Safety and immunogenicity of the Ad26.COV2.S COVID-19 vaccine candidate: interim results of a phase 1/2a, double-blind, randomized, placebo-controlled trial: MedRxiv. WHO 2020; DOI: 10.1101/2020.09.23.20199604.
  • 10 Zhu FC, Li YH, Guan XH. et al Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet (London, England) 2020; 395: 1845-1854 . doi:10.1016/S0140-6736(20)31208-3
  • 11 Logunov DY, Dolzhikova IV, Zubkova OV. et al Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet (London, England) 2020; 396: 887-897 . doi:10.1016/S0140-6736(20)31866-3
  • 12 Vogel AB, Kanevsky I, Che Y. et al A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates: BioRxiv. WHO 2020; DOI: 10.1101/2020.09.08.280818.
  • 13 Walsh EE, Frenck RW, Falsey AR. et al Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. The New England journal of medicine 2020; 383: 2439-2450 . doi:10.1056/NEJMoa2027906
  • 14 Pfizer. pfizer and Biontech Propose Expansion of Pivotal Covid-19 Vaccine Trial. Pfizer; 2020
  • 15 Pfizer. Our Progress in Developing a Potential Covid-19 Vaccine. Pfizer; 2020
  • 16 Pfizer. A Phase 1/2/3, Placebo-Controlled, Randomized, Observer-Blind, Dose-Finding Study to Evaluate the Safety, Tolerability, Immunogenicity, and Efficacy of Sars-COV-2 RNA Vaccine Candidates Against Covid-19 in Healthy Individuals. In. PF-07302048 (BNT162 RNA-Based COVID-19 Vaccines) Protocol C4591001 Pfizer; 2020
  • 17 Polack FP, Thomas SJ, Kitchin N. et al Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. The New England journal of medicine 2020; DOI: 10.1056/NEJMoa2034577.
  • 18 Heaton PM. The Covid-19 Vaccine-Development Multiverse. The New England journal of medicine 2020; 383: 1986-1988 . doi:10.1056/NEJMe2025111
  • 19 ModernaTX I. Dose-Confirmation Study to Evaluate the Safety, Reactogenicity, and Immunogenicity of mRNA-1273 COVID-19 Vaccine in Adults Aged 18 Years and Older. ClinicalTrial.gov; 2020
  • 20 Anderson EJ, Rouphael NG, Widge AT. et al Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N Engl J Med 2020; 383: 2427-2438 . doi:10.1056/NEJMoa2028436
  • 21 Widge AT, Rouphael NG, Jackson LA. et al Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N Engl J Med 2020; DOI: 10.1056/NEJMc2032195.
  • 22 Jackson LA, Anderson EJ, Rouphael NG. et al An mRNA Vaccine against SARS-CoV-2 – Preliminary Report. The New England journal of medicine 2020; 383: 1920-1931 . doi:10.1056/NEJMoa2022483
  • 23 Moderna I. Moderna Announces Primary Efficacy Analysis in Phase 3 COVE Study for Its COVID-19 Vaccine Candidate and Filing Today with U.S. FDA for Emergency Use Authorization. 30 November 2020. Moderna, Inc; 2020
  • 24 Cabanillas BAC, Novak N. Allergic reactions to the first COVID-19 vaccine: a potential role of Polyethylene glycol?. Allergy 2020; DOI: 10.22541/au.160769266.63428422/v1.
  • 25 Klimek L, Jutel M, Akdis CA. et al ARIA-EAACI statement on severe allergic reactions to COVID-19 vaccines – an EAACI-ARIA position paper. Allergy 2020; DOI: 10.1111/all.14726. . Online ahead of print. PMID: 33378789
  • 26 Klimek L, Novak N, Hamelmann E. et al Severe allergic reactions after COVID-19-Vaccination with the Pfizer/BioNTech Vaccine in Great Britain and USA Position Statement of the German allergological Societies AeDA, DGAKI and GPA. Allergo Journal International 2021; DOI: 10.1007/s40629-020-00160-4.
  • 27 Klimek LNN, Cabanillas B, Jutel M. et al Potential allergenic components of the mRNA-1273 vaccine for COVID-19: possible roles for polyethlene glycol and IgG-mediated complement activation. Allergy 2021 [in press]
  • 28 Gülsen A, Wedi B, Jappe U. Hypersensitivity reactions to biologics (part I): allergy as an important differential diagnosis in complex immune-derived adverse events. Allergo J In 2020; 29 (04) 97-125
  • 29 Gülsen A, Wedi B, Jappe U. Hypersensitivity reactions to biologics (part II): classifications and current diagnostic and treatment approaches. Allergo J Int 2020; 29 (05) 139-154
  • 30 Querbach C, Biedermann T, Busch DH. et al Suspected penicillin allergy: risk assessment using an algorithm as an antibiotic stewardship project. Allergo J Int 2020; 29 (06) 174-180
  • 31 Bangerl T, Zahel B, Lueger A. et al Hypersensitivity reactions to non-steroidal anti-inflammatory drugs: results of an Austrian cohort study. Allergo J Int 2020; 29 (07) 227-232
  • 32 Honda T, Kuriyama K, Kiso K. et al Incidence rate of severe adverse drug reactions to nonionic contrast media at the National Hospital Organization Osaka National Hospital. Allergo J Int 2020; 29 (07) 240-244
  • 33 Bostan OC, Cakmak ME, Kaya SB. et al Anaphylaxis to lidocaine and cross-reactivity to articaine and prilocaine with tolerance to bupivacaine. Allergo J Int 2020; 29 (07) 245-247
  • 34 Andriollo G, Urbani S, Buonomo A. et al Rapid protocol for irinotecan desensitization: a case report and literature review. Allergo J Int 2020; 29 (08) 286-288
  • 35 Ankermann T, Spindler T, Gerstlauer M. et al Allergies and vaccination: a myth demystified. Allergo J Int 2018; 27 (07) 234-243
  • 36 Bork K, Aygören-Pürsün E, Bas M. et al Guideline: Hereditary angioedema due to C1 inhibitor deficiency. Allergo J Int 2019; 28 (01) 16-29
  • 37 Thierse HJ, Luch A. Consumer protection and risk assessment: sensitising substances in consumer products. Allergo J Int 2019; 28 (06) 167-182
  • 38 Mohamed Khazin S, Abdullah D, Liew AKC. et al IgE-mediated hypersensitivity to chlorhexidine among first-year dental students. Allergo J Int 2019; 28 (06) 204-208
  • 39 Paulmann M, Mockenhaupt M. Severe skin reactions: clinical picture, epidemiology, etiology, pathogenesis, and treatment. Allergo J Int 2019; 28 (08) 311-326
  • 40 Bradfisch F, Pietsch M, Forchhammer S. et al Case series of anaphylactic reactions after rabies vaccinations with gelatin sensitization. Allergo J Int 2019; 28 (04) 103-106
  • 41 Mickler M, Drexler K, Schreml S. Wheat-dependent exercise-induced anaphylaxis with Tri-a-14-sensitization as part of a lipid transfer protein syndrome. Allergo J Int 2020; 29 (01) 9-11
  • 42 Herz A, Kopp MV. Anaphylactic reaction at a pizzeria in a 13-year-old female patient. Allergo J Int 2020; 29 (05) 165-167
  • 43 Wurpts G, Aberer W, Dickel H. et al Guideline on diagnostic procedures for suspected hypersensitivity to beta-lactam antibiotics. Guideline of the German Society for Allergology and Clinical Immunology (DGAKI) in collaboration with the German Society of Allergology (AeDA), German Society for Pediatric Allergology and Environmental Medicine (GPA), the German Contact Dermatitis Research Group (DKG), the Austrian Society for Allergology and Immunology (ÖGAI), and the Paul-Ehrlich Society for Chemotherapy (PEG). Allergo J Int 2019; 28 (05) 121-151
  • 44 Worm M, Hanschmann-Mohn T, Scherer-Hofmeier K. et al Drug-induced anaphylaxis – elicitors, mechanisms and diagnosis. Allergo J Int 2019; 28 (08) 327-329
  • 45 Klimek L, Chaker AM, Cuevas M. Allergische Reaktionen auf COVID-19-Impfungen – Was HNO-Ärzte wissen sollten. LRO 2021; online first DOI: http://dx.doi.org/10.1055/a-1353-1387.
  • 46 Klimek L, Bergmann KC, Brehler R. et al Allergologische Diagnostik und Therapien bei COVID-19-Impfungen: Praktische Handlungsempfehlungen. Allergo Journal International 2021; in press DOI: 10.1007/s40629-021-00165-7.