Fortschr Neurol Psychiatr 2021; 89(09): 445-458
DOI: 10.1055/a-1370-3058
Fort- und Weiterbildung

Automatische Erkennung von epilepsietypischen Potenzialen und Anfällen im EEG

Automatic detection of epileptiform potentials and seizures in the EEG
Christoph Baumgartner
,
Sebastian Hafner
,
Johannes P. Koren

Die Elektroenzephalografie (EEG) ist der wichtigste apparative Eckpfeiler in der Diagnostik und Therapieführung bei Epilepsien. Die visuelle EEG-Befundung stellt dabei nach wie vor den Goldstandard dar. Automatische computerunterstützte Methoden zur Detektion und Quantifizierung von interiktalen epilepsietypischen Potenzialen und Anfällen unterstützen eine zeitsparende, objektive, rasch und jederzeit verfügbare quantitative EEG-Befundung

Abstract

Automatic computer-based algorithms for the detection of epileptiform potentials and seizure patterns on EEG facilitate a time-saving, objective method of quantitative EEG interpretation which is available 7/24. For the automatic detection of interictal epileptiform potentials sensitivities range from 65 to 99% with false positive detections of 0,09 to 13,4 per minute. Recent studies documented equal or even better performance of automatic spike detection programs compared with experienced human EEG readers. The seizure detection problem–one of the major problems in clinical epileptology–consists of the fact that the majority of focal onset seizures with impaired awareness and of seizures arising out of sleep occur unnoticed by patients and their caregivers. Automatic seizure detection systems could facilitate objective seizure documentation and thus help to solve the seizure detection problem. Furthermore, seizure detection systems may help to prevent seizure-related injuries and sudden unexpected death in epilepsy (SUDEP), and could be an integral part of novel, seizure-triggered on-demand therapies in epilepsy. During long-term video-EEG monitoring seizure detection systems could improve patient safety, provide a time-saving objective and reproducible analysis of seizure patterns and facilitate automatic computer-based patient testing during seizures. Sensitivities of seizure detection systems range from 75 to 90% with extratemporal seizures being more difficult to detect than temporal seizures. The false positive alarm rate ranges from 0,1 to 5 per 24 hours. Finally, machine learning algorithms, especially deep learning approaches, open a new highly promising era in automatic spike and seizure detection.



Publikationsverlauf

Artikel online veröffentlicht:
15. September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hartl E, Noachtar S. EEG: Stellenwerte und technische Voraussetzungen der EEG-Untersuchung. Klin Neurophysiol 2018; 49: 48-55
  • 2 Koren J, Herta J, Baumgartner C. Critical care EEG. Klin Neurophysiol 2019; 50: 60-72
  • 3 Bagheri E, Dauwels J, Dean BC. et al. Interictal epileptiform discharge characteristics underlying expert interrater agreement. Clin Neurophysiol 2017; 128: 1994-2005
  • 4 Jing J, Herlopian A, Karakis I. et al. Interrater reliability of experts in identifying interictal epileptiform discharges in electroencephalograms. JAMA Neurol 2020; 771: 49-57
  • 5 Webber WRS, Lesser RP. Automated spike detection in EEG. Clin Neurophysiol 2017; 128: 241-242
  • 6 Noachtar S, Binnie C, Ebersole J. et al. Glossar der meistgebrauchten Begriffe in der klinischen Elektroenzephalografie und Vorschläge für die EEG-Befunderstellung. Klin Neurophysiol 2004; 35: 5-21
  • 7 Baumgartner C, Gallmetzer P, Pirker S. et al. EEG-Muster, die mit epilepsietypischer Aktivität verwechselt werden könnn Ebner A, Deuschl G. EEG–Referenzreihe Neurologie. Methoden. 2. Aufl.. Stuttgart: Thieme; 2011
  • 8 Benbadis SR. “Just like EKGs!” Should EEGs undergo a confirmatory interpretation by a clinical neurophysiologist?. Neurology 2013; 80: 47-51
  • 9 Halford JJ, Arain A, Kalamangalam GP. et al. Characteristics of EEG interpreters associated with higher interrater agreement. J Clin Neurophysiol 2017; 34: 168-173
  • 10 Halford JJ, Westover MB, LaRoche SM. et al. Interictal epileptiform discharge detection in EEG in different practice settings. J Clin Neurophysiol 2018; 35: 375-380
  • 11 Scheuer ML, Bagic A, Wilson SB. Spike detection: Interreader agreement and a statistical Turing test on a large data set. Clin Neurophysiol 2017; 128: 243-250
  • 12 Lodder SS, Askamp J, van Putten MJ. Inter-ictal spike detection using a database of smart templates. Clin Neurophysiol 2013; 124: 2328-2335
  • 13 Jing J, Sun H, Kim JA. et al. Development of expert-level automated detection of epileptiform discharges during electroencephalogram interpretation. JAMA Neurol 2020; 77: 103-108
  • 14 Frost JD. Automatic recognition and characterization of epileptiform discharges in the human EEG. J Clin Neurophysiol 1985; 2: 231-249
  • 15 Wilson SB, Emerson R. Spike detection: a review and comparison of algorithms. Clin Neurophysiol 2002; 113: 1873-1881
  • 16 Harner R. Automatic EEG spike detection. Clinical EEG and neuroscience 2009; 40: 262-270
  • 17 Halford JJ. Computerized epileptiform transient detection in the scalp electroencephalogram: obstacles to progress and the example of computerized ECG interpretation. Clin Neurophysiol 2009; 120: 1909-1915
  • 18 Tjepkema-Cloostermans MC, de Carvalho RCV, van Putten M. Deep learning for detection of focal epileptiform discharges from scalp EEG recordings. Clin Neurophysiol 2018; 129: 2191-2196
  • 19 Gotman J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol 1982; 54: 530-540
  • 20 Smith G, Lee S, van Drongelen W. A glimpse into the future of clinical neurophysiology: Can we use machines to interpret EEG?. Clin Neurophysiol 2018; 129: 2186-2187
  • 21 van Putten M, Olbrich S, Arns M. Predicting sex from brain rhythms with deep learning. Scientific reports 2018; 8: 3069
  • 22 Hoppe C, Poepel A, Elger CE. Epilepsy: accuracy of patient seizure counts. Arch Neurol 2007; 64: 1595-1599
  • 23 Elger CE, Mormann F. Seizure prediction and documentation – two important problems. Lancet Neurol 2013; 12: 531-532
  • 24 Baumgartner C, Koren JP. Automatic seizure detection in epilepsy. Klin Neurophysiol 2018; 49: 8-20
  • 25 Baumgartner C, Koren JP. Seizure detection using scalp-EEG. Epilepsia 2018; 59: 14-22
  • 26 Baumgartner C, Koren JP, Rothmayer M. Automatic computer-based detection of epileptic seizures. Front Neurol 2018; 9: 639
  • 27 Ulate-Campos A, Coughlin F, Gainza-Lein M. et al. Automated seizure detection systems and their effectiveness for each type of seizure. Seizure 2016; 40: 88-101
  • 28 Hamandi K, Beniczky S, Diehl B. et al. Current practice and recommendations in UK epilepsy monitoring units. Report of a national survey and workshop. Seizure 2017; 50: 92-98
  • 29 Rosenow F, Bast T, Czech T. et al. Revised version of quality guidelines for presurgical epilepsy evaluation and surgical epilepsy therapy issued by the Austrian, German, and Swiss working group on presurgical epilepsy diagnosis and operative epilepsy treatment. Epilepsia 2016; 57: 1215-1220
  • 30 Furbass F, Ossenblok P, Hartmann M. et al. Prospective multi-center study of an automatic online seizure detection system for epilepsy monitoring units. Clin Neurophysiol 2015; 126: 1124-1131
  • 31 Beniczky S, Neufeld M, Diehl B. et al. Testing patients during seizures: A European consensus procedure developed by a joint taskforce of the ILAE–Commission on European Affairs and the European Epilepsy Monitoring Unit Association. Epilepsia 2016; 57: 1363-1368
  • 32 Touloumes G, Morse E, Chen WC. et al. Human bedside evaluation versus automatic responsiveness testing in epilepsy (ARTiE). Epilepsia 2016; 57: e28-e32
  • 33 Wilson SB, Scheuer ML, Plummer C. et al. Seizure detection: correlation of human experts. Clin Neurophysiol 2003; 114: 2156-2164
  • 34 Hopfengartner R, Kasper BS, Graf W. et al. Automatic seizure detection in long-term scalp EEG using an adaptive thresholding technique: a validation study for clinical routine. Clin Neurophysiol 2014; 125: 1346-1352
  • 35 Meier R, Dittrich H, Schulze-Bonhage A. et al. Detecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patterns. J Clin Neurophysiol 2008; 25: 119-131
  • 36 Hopfengartner R, Kerling F, Bauer V. et al. An efficient, robust and fast method for the offline detection of epileptic seizures in long-term scalp EEG recordings. Clin Neurophysiol 2007; 118: 2332-2343
  • 37 Ramgopal S, Thome-Souza S, Jackson M. et al. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav 2014; 37: 291-307
  • 38 Emami A, Kunii N, Matsuo T. et al. Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images. NeuroImage Clinical 2019; 22: 101684
  • 39 Hussein R, Palangi H, Ward RK. et al. Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals. Clin Neurophysiol 2019; 130: 25-37