Rofo 2021; 193(09): 1074-1080
DOI: 10.1055/a-1354-6736
Interventional Radiology

Motion Reduction for C-Arm Computed Tomography of the Pulmonary Arteries: Image Quality of a Motion Correction Algorithm in Patients with Chronic Thromboembolic Hypertension During Balloon Pulmonary Angioplasty

Verbesserung der Bildqualität selektiver C-Arm-Computertomografien im Rahmen der pulmonalen Ballonangioplastie bei Patienten mit chronischer thromboembolischer pulmonaler Hypertonie: Anwendbarkeit und potenzieller klinischer Nutzen
Sabine Maschke
1   Department of Diagnostic and Interventional Radiology, MHH, Hannover, Germany
,
Thomas Werncke
1   Department of Diagnostic and Interventional Radiology, MHH, Hannover, Germany
,
Lena Sophie Becker
1   Department of Diagnostic and Interventional Radiology, MHH, Hannover, Germany
,
Julius Renne
1   Department of Diagnostic and Interventional Radiology, MHH, Hannover, Germany
,
Cornelia Lieselotte Angelika Dewald
1   Department of Diagnostic and Interventional Radiology, MHH, Hannover, Germany
,
Karen M. Olsson
2   Clinic for Pneumology, MHH, Hannover, Germany
,
Marius M. Hoeper
2   Clinic for Pneumology, MHH, Hannover, Germany
,
Frank K. Wacker
1   Department of Diagnostic and Interventional Radiology, MHH, Hannover, Germany
,
Bernhard C. Meyer
1   Department of Diagnostic and Interventional Radiology, MHH, Hannover, Germany
,
1   Department of Diagnostic and Interventional Radiology, MHH, Hannover, Germany
› Author Affiliations

Abstract

Purpose To evaluate the feasibility and image quality of a motion correction algorithm for supra-selective C-arm computed tomography (CACT) of the pulmonary arteries in patients with chronic thromboembolic pulmonary hypertension (CTEPH) undergoing balloon pulmonary angioplasty (BPA).

Materials & Methods CACT raw data acquired during 30 consecutive BPAs were used for image reconstruction using either standard (CACTorg) or a motion correction algorithm (CACTmc), using 400 iterations. Two readers independently evaluated 188 segmental and 564 sub-segmental contrast-enhanced pulmonary arteries in each reconstruction. The following categories were assessed: Sharpness of the vessel, motion artifacts, delineation of bronchial structures, vessel geometry, and visibility of treatable lesions. The mentioned criteria were rated from grade 1 to grade 3: grade 1: excellent quality; grade 2: good quality; grade 3: poor/seriously impaired quality. Inter-observer agreement was calculated using Cohen’s Kappa. Due to an excellent agreement, the ratings of both readers were merged. Differences in the assessed image quality criteria were evaluated using pairwise Wilcoxon signed-rank test.

Results Inter-observer agreement was excellent for all evaluated image quality criteria (κ > 0.81). For all assessed image quality criteria, the ratings on CACTorg were good but improved significantly for CACTmc to excellent for the whole vascular tree (p < 0.01). When considering segmental and sub-segmental levels individually, all image quality criteria improved significantly for CACTmc on both levels (p < 0.01). While ratings of CACTmc were constant for both levels (segmental and sub-segmental) for all criteria, the ratings of CACTorg were slightly impaired for the sub-segmental arteries.

Conclusion Motion correction for supra-selective contrast-enhanced CACT of the pulmonary arteries is feasible and improves the overall image quality.

Key Points:

  • Motion artifacts can severely impair the diagnostic accuracy of CACT.

  • A motion correction algorithm can significantly improve image quality in CACT of the pulmonary arteries.

  • Especially the overall image quality of sub-segmental branches is significantly improved.

Citation Format

  • Maschke S, Werncke T, Becker LS et al. Motion Reduction for C-Arm Computed Tomography of the Pulmonary Arteries: Image Quality of a Motion Correction Algorithm in Patients with Chronic Thromboembolic Hypertension During Balloon Pulmonary Angioplasty. Fortschr Röntgenstr 2021; 193: 1074 – 1080

Zusammenfassung

Ziel Evaluation des potenziellen Nutzens eines automatisierten Bewegungskorrekturalgorithmus hinsichtlich der Verbesserung der Bildqualität der selektiven C-Arm-Computertomografie (CACT) der Pulmonalarterien im Rahmen der pulmonalen Ballonangioplastie (BPA) bei Patienten mit chronischer thromboembolischer pulmonaler Hypertonie (CTEPH).

Material und Methoden Dreißig Rohdatensätze von selektiven CACT, die im Rahmen von BPA-Prozeduren akquiriert wurden, wurden mittels Standard- (CACTorg) oder Bewegungskorrekturalgorithmus (CACTmc) unter der Verwendung von 400 Iterationen rekonstruiert. Zwei Leser bewerteten unabhängig die Bildqualität für Segmentarterien und subsegmentale Äste anhand 5 definierter Kriterien: Schärfe des Gefäßes, Bewegungsartefakte, Abgrenzbarkeit der Bronchien, Gefäßgeometrie und Erkennbarkeit potenziell mittels BPA therapierbarer Befunde. Alle evaluierten Bildqualitätskriterien wurden von Grad 1 bis Grad 3 bewertet: Grad 1: exzellente Qualität, Grad 2: gute Qualität, Grad 3: schlechte/deutlich beeinträchtigte Qualität. Übereinstimmungen zwischen den Untersuchern wurden mittels Cohens Kappa ermittelt. Aufgrund exzellenter Übereinstimmung wurden die Ergebnisse beider Leser zusammengefasst und in der Folge als ein Datensatz verwendet. Unterschiede in der Bildqualität bezüglich der erhobenen Kriterien zwischen dem originalen und dem bearbeiteten Datensatz wurden für alle beurteilten PAS und ihre nächst untergeordneten Äste unter Verwendung des gepaarten Wilcoxon-Vorzeichen-Rang-Tests erhoben.

Ergebnisse Die Interobserver-Übereinstimmung war exzellent für alle untersuchten Kriterien der Bildqualität (κ > 0,81). Bezogen auf den gesamten Gefäßbaum konnte hinsichtlich aller evaluierten Kriterien eine signifikante Verbesserung der Bildqualität für CACTmc im Vergleich zur ohnehin schon guten Bildqualität für CACTorg beobachtet werden (p < 0,01). Bei separater Betrachtung der segmentalen und subsegmentalen Gefäßabschnitte konnte eine signifikante Verbesserung aller Bildqualitätskritierien für CACTmc beobachtet werden (p < 0,01). Während die Bewertungen für CACTmc in beiden Gefäßabschnitten (segmental and subsegmental) für alle beurteilten Kriterien konstant blieben, waren die für CACTorg in den subsegmentalen Ästen etwas schlechter.

Schlussfolgerung Die Anwendung eines Bewegungskorrekturalgorithmus auf selektive CACT der Pulmonalarterien ist möglich und kann die Bildqualität signifikant verbessern.

Kernaussagen:

  • Die Aussagekraft der CACT kann entscheidend durch nicht immer vermeidbare Bewegungsartefakte gemindert werden.

  • Mittels Bewegungskorrekturalgorithmus kann die Bildqualität selektiver CACT der Pulmonalarterien signifikant verbessert werden.

  • Besonders subsegmentale Äste kommen besser zur Darstellung.



Publication History

Received: 20 October 2020

Accepted: 07 January 2021

Article published online:
25 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Maschke SK, Hinrichs JB, Renne J. et al. C-Arm computed tomography (CACT)-guided balloon pulmonary angioplasty (BPA): Evaluation of patient safety and peri- and post-procedural complications. Eur Radiol 2019; 29: 1276-1284
  • 2 Angle JF. Cone-beam CT: vascular applications. Techniques in Vascular and Interventional Radiology 2013; 16: 144-149
  • 3 Hinrichs JB, Renne J, Hoeper MM. et al. Balloon pulmonary angioplasty: applicability of C-Arm CT for procedure guidance. Eur Radiol 2016; 26: 4064-4071
  • 4 Hinrichs JB, Marquardt S, von Falck C. et al. Comparison of C-arm Computed Tomography and Digital Subtraction Angiography in Patients with Chronic Thromboembolic Pulmonary Hypertension. Cardiovasc Intervent Radiol 2016; 39: 53-63
  • 5 Maschke SK, Werncke T, Becker LS. et al The Value of C-Arm Computed Tomography in Addition to Conventional Digital Subtraction Angiography in the Diagnostic Work-up of Patients with Suspected Chronic Thromboembolic Pulmonary Hypertension: An Update of 300 Patients. Acad Radiol 2020 Aug 4;S1076-6332(20)30421-9. doi:10.1016/j.acra.2020.06.039. Online ahead of print
  • 6 Schott P, Katoh M, Fischer N. et al. Radiation Dose in Prostatic Artery Embolization Using Cone-Beam CT and 3D Roadmap Software. J Vasc Interv Radiol 2019; 30: 1452-1458
  • 7 Tacher V, Radaelli A, Lin M. et al. How I Do It: Cone-Beam CT during Transarterial Chemoembolization for Liver Cancer. Radiology 2015; 274: 320-334 DOI: 10.1148/radiol.14131925.
  • 8 Meyer BC, Frericks BB, Albrecht T. et al. Contrast-Enhanced Abdominal Angiographic CT for Intra-abdominal Tumor Embolization: A New Tool for Vessel and Soft Tissue Visualization. Cardiovasc Intervent Radiol 2007; 30: 743-749
  • 9 Lin JL, Chen HM, Lin FC. et al. Application of DynaCT angiographic reconstruction in balloon pulmonary angioplasty. Eur Radiol 2020; 30: 6950-6957 DOI: 10.1007/s00330-020-07028-9. Epub 2020 Jul 3.
  • 10 Olsson KM, Wiedenroth CB, Kamp JC. et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: the initial German experience. European Respiratory Journal 2017; 49: 1602409
  • 11 Wilkens H, Konstantinides S, Lang I. et al. [Chronic thromboembolic pulmonary hypertension: Recommendations of the Cologne Consensus Conference 2016]. Dtsch Med Wochenschr 2016; 141: S62-S69
  • 12 Rit S, Nijkamp J, van Herk M. et al. Comparative study of respiratory motion correction techniques in cone-beam computed tomography. Radiother Oncol 2011; 100: 356-359
  • 13 Schultz CJ, Lauritsch G, Van Mieghem N. et al. Rotational angiography with motion compensation: first-in-man use for the 3D evaluation of transcatheter valve prostheses. EuroIntervention 2015; 11: 442-449
  • 14 Rohkohl C, Lauritsch G, Biller L. et al. ECG-gated interventional cardiac reconstruction for non-periodic motion. Med Image Comput Comput Assist Interv 2010; 13: 151-158
  • 15 Rohkohl C, Lauritsch G, Biller L. et al. Interventional 4D motion estimation and reconstruction of cardiac vasculature without motion periodicity assumption. Medical Image Analysis 2010; 14: 687-694
  • 16 Galiè N, Humbert M, Vachiery JL. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016; 37: 67-119
  • 17 BOYDEN EA. The Nomenclature of the Bronchopulmonary Segments and Their Blood Supply: (As Revised by the Seventh International Congress of Anatomists, 1960). Chest 1961; 39: 1-6
  • 18 Kundel HL, Polansky M. Measurement of Observer Agreement. Radiology 2003; 228: 303-308
  • 19 Werncke T, Hinrichs JB, Alikhani B. et al. Virtual single source CT using dual source acquisition: Clinical applicability in run-off CT-angiography for intra-individual comparison of different scan protocols. Eur J Radiol 2018; 101: 149-156
  • 20 Feinstein JA, Goldhaber SZ, Lock JE. et al. Balloon pulmonary angioplasty for treatment of chronic thromboembolic pulmonary hypertension. Circulation 2001; 103: 10-13
  • 21 Hinrichs JB, Werncke T, Kaireit T. et al. C-Arm Computed Tomography Adds Diagnostic Information in Patients with Chronic Thromboembolic Pulmonary Hypertension and a Positive V/Q SPECT. Fortschr Röntgenstr 2017; 189: 49-56
  • 22 Sugiyama M, Fukuda T, Sanda Y. et al. Organized thrombus in pulmonary arteries in patients with chronic thromboembolic pulmonary hypertension; imaging with cone beam computed tomography. Jpn J Radiol 2014; 32: 375-382 DOI: 10.1007/s11604-014-0319-8. Epub 2014 Apr 24.
  • 23 Maschke SK, Renne J, Werncke T. et al. Chronic thromboembolic pulmonary hypertension: Evaluation of 2D-perfusion angiography in patients who undergo balloon pulmonary angioplasty. Eur Radiol 2017; 27: 4264-4270
  • 24 Berger M, Xia Y, Aichinger W. et al. Motion compensation for cone-beam CT using Fourier consistency conditions. Phys Med Biol 2017; 62: 7181-7215
  • 25 Klugmann A, Bier B, Müller K. et al. Deformable respiratory motion correction for hepatic rotational angiography. Comput Med Imaging Graph 2018; 66: 82-89
  • 26 Riblett MJ, Christensen GE, Weiss E. et al. Data-driven respiratory motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) using groupwise deformable registration. Medical Physics 2018; 45: 4471-4482
  • 27 Dioguardi Burgio M, Benseghir T, Roche V. et al. Clinical impact of a new cone beam CT angiography respiratory motion artifact reduction algorithm during hepatic intra-arterial interventions. Eur Radiol 2020; 30: 163-174