Synthesis 2021; 53(05): 978-982
DOI: 10.1055/a-1351-2370
paper

A Facile Total Synthesis of Mubritinib

Rong Wang
a  Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. of China
,
Menghan Cui
a  Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. of China
,
Qing Yang
b  State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, P. R. of China
,
Chunxiang Kuang
a  Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. of China
› Author Affiliations
The work was supported by the National Natural Science Foundation of China (No. 21272174).


Abstract

A five-step, practical, and concise total synthesis of mubritinib is described. The synthesis utilized Friedel–Crafts acylation, click reaction, reduction, and demethylation for the construction of the triazole ring system as key steps. Another important feature of this synthesis is the Bredereck oxazole synthesis. The main advantages of this process are the improved yield and decreased number of reaction steps, which paves the way for the industrial-scale synthesis of mubritinib.

Supporting Information



Publication History

Received: 10 December 2020

Accepted after revision: 12 January 2021

Publication Date:
12 January 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sridhar SS, Seymour L, Shepherd FA. Lancet Oncol. 2003; 4: 397
  • 2 Nagasawa J, Mizokami A, Kosida K, Yoshida S, Naito K, Namiki M. Int. J. Urol. 2006; 13: 587
  • 3 Sugita S, Kawashima H, Tanaka T, Kurisu T, Sugimura K, Nakatani T. Oncol. Rep. 2004; 11: 1273
  • 4 Kunimasa K, Tsukahara S, Tomida A. Cancer Sci. 2018; 109: 1139
  • 5 Ufkin ML, Peterson S, Yang XH, Driscoll H, Duarte C, Sathyanarayana P. Leuk. Res. 2014; 38: 402
  • 6 Shao X, Liu Y, Li Y, Xian M, Zhou Q, Yang B, Ying M, He Q. Sci. Rep. 2016; 6: 24589
  • 7 Baccelli I, Gareau Y, Lehnertz B, Gingras S, Spinella J.-F, Corneau S, Mayotte N, Girard S, Frechette M, Blouin-Chagnon V, Leveillé K, Boivin I, MacRae T, Krosl J, Thiollier C, Lavallée V.-P, Kanshin E, Bertomeu T, Coulombe-Huntington J, St-Denis C, Bordeleau M.-E, Boucher G, Roux PP, Lemieux S, Tyers M, Thibault P, Hébert J, Marinier A, Sauvageau G. Cancer Cell 2019; 36: 84
  • 8 Tasaka A, Hitaka T, Matsutani E. WO2001077107A1, 2001
  • 9 Tasaka A, Naito K. WO2003031442A1, 2003
  • 10 Zhang Z, Kuang C. Chin. J. Chem. 2013; 31: 1011
  • 11 Xu M, Kuang C, Wang Z, Yang Q, Jiang Y. Synthesis 2011; 223
  • 12 Chowdhury N, Dutta S, Karthick S, Anoop A, Dasgupta S, Pradeep Singh ND. J. Photochem. Photobiol., B 2012; 115: 25
  • 13 Monasterolo C, Müller-Bunz H, Gilheany DG. Chem. Sci. 2019; 10: 6531
  • 14 West CT, Donnelly SJ, Kooistra DA, Doyle MP. J. Org. Chem. 1973; 38: 2675
  • 15 Ma Z, Chao HJ, Turdi H, Hangeland JJ, Friends T, Kopcho LM, Lawrence RM, Cheng D. Anal. Biochem. 2016; 501: 48
  • 16 Kawasaki I, Matsuda K, Kaneko T. Bull. Chem. Soc. Jpn. 1971; 44: 1986
  • 17 Bredereck H, Bangert R. Angew. Chem. 1962; 74: 905
  • 18 Bredereck H, Bangert R. Chem. Ber. 1964; 97: 1414
  • 19 Einsiedel J, Thomas C, Hubner H, Gmeiner P. Bioorg. Med. Chem. Lett. 2000; 10: 2041
  • 20 Bossenmaier B, Friebe WG, Reiff U, Rueth M, Voss E. US20050038091A1, 2005