CC BY-NC-ND 4.0 · Planta Medica International Open 2021; 8(01): e1-e9
DOI: 10.1055/a-1348-5707
Original Papers

Antimalarial Activity of Bidens pilosa Root Extract Co-spray Dried in the Presence of β-Cyclodextrin or Aerosil:Microcrystalline Cellulose Blend

Diego F. Cortés-Rojas
1   Universidade de São Paulo - LAPROFAR-FCFRP, Ribeirão Preto - SP, Brazil
,
Thales Lira de Medeiros
2   Universidade Federal do Rio Grande do Norte, LABMAT-DMP-CB, Natal - RN, Brazil
,
2   Universidade Federal do Rio Grande do Norte, LABMAT-DMP-CB, Natal - RN, Brazil
,
Ywlliane da Silva Rodrigues Meurer
2   Universidade Federal do Rio Grande do Norte, LABMAT-DMP-CB, Natal - RN, Brazil
3   Universidade Federal da Paraíba, Dep. Psicologia, João Pessoa - PB, Brazil
,
2   Universidade Federal do Rio Grande do Norte, LABMAT-DMP-CB, Natal - RN, Brazil
,
1   Universidade de São Paulo - LAPROFAR-FCFRP, Ribeirão Preto - SP, Brazil
› Author Affiliations
Funding: The authors thank CAPES (T.L.M, Master Scholarship), FAPESP (Grants n. 08/03588–0, 09/11080–0) and CNPq (grant 476637/2012–0) for financial support.

Abstract

The purpose of this work was to evaluate if the antimalarial activity of Bidens pilosa L. root extract could be enhanced by co-spray drying with the pharmaceutical excipients blend of colloidal silicon dioxide:microcrystalline cellulose and β-cyclodextrin. The in vivo antimalarial activity of the products was evaluated in mice infected with Plasmodium berghei. Acute in vivo and in vitro toxicity in S5 HeLa cells were also carried out. B. pilosa L. root extract was lyophilized and used as a control. The spray-dried preparations enhanced the survival of the infected mice compared to the lyophilized crude root extract. The Bidens extract formulations were able to inhibit up to 71% of the growth of the parasite in the lowest tested dose, being about five times more active than the crude extract, thus showing significant partial antiplasmodial activity. The dried preparations did not show signals of toxicity in both the in vitro and in vivo assays. The results showed strong evidence that the co-spray drying of B. pilosa root extract with the selected pharmaceutical excipients might stabilize the bioactive compounds and enhance its antimalarial activity compared with the lyophilized crude extract.



Publication History

Received: 22 June 2020
Received: 15 December 2020

Accepted: 05 January 2021

Article published online:
03 March 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 World Health Organization. World Malaria Report 2019, Available at https://apps.who.int/iris/rest/bitstreams/1262394/retrieve. Accessed on 15/09/2020
  • 2 Garcia-Bustos JF, Gamo FJ. Antimalarial drug resistance and early drug discovery. Curr Pharm Des 2013; 19: 270-281
  • 3 Ridder S, van der Kooy F, Verpoorte R. Artemisia annua as a self-reliant treatment for malaria in developing countries. J Ethnopharmacol 2008; 120: 302-314
  • 4 Petersen I, Eastman R, Lanzer M. Drug-resistant malaria: Molecular mechanisms and implications for public. Health FEBS Letters 2011; 585: 1551-1562
  • 5 Na-Bangchang K, Muhamad P, Ruaengweerayut R, Chaijaroenkul W, Karbwang J. Identification of resistance of Plasmodium falciparum to artesunate-mefloquine combination in an area along the Thai-Myanmar border: integration of clinico-parasitological response, systemic drug exposure, and in vitro parasite sensitivity. Malar J 2013; 12: 263-276
  • 6 Phyo AP, Nosten F. The artemisinin resistance in Southeast Asia: An imminent global threat to malaria elimination. In Manguin S, Dev V. Towards malaria elimination – a leap forward. (e-book), London, SW7 2QJ, UK: IntechOpen; 2018: 15-39
  • 7 Uwimana A, Legrand E, Stokes BH, Ndikumana JM, Warsame M, Umulisa N, Ngamije D, Munyaneza T, Mazarati JB, Munguti K, Campagne P, Criscuolo A, Ariey F, Murindahabi M, Ringwald P, Fidock DA, Mbituyumuremyi A, Menard D. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum Kelch13 R561H mutant 663 parasites in Rwanda. Nat Med 2020; 26: 1602-1608
  • 8 MMV – Medicines for Malaria Venture. Antimalarial development: a step forward in the global fight against antimicrobial resistance Available at https://www.mmv.org/newsroom/publications/antimalarial-development-step-forward-global-fight-against-antimicrobial. Accessed January 16, 2020
  • 9 Wagner H, Ulrich-Merzenich G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomed 2009; 16: 97-110
  • 10 Bhakuni RS, Jain DC, Sharma RP, Kumar S. Secondary metabolites of Artemisia annua and their biological activity. Curr Sci 2001; 80: 35-48
  • 11 Liu KC, Yang SL, Roberts MF, Elford BC, Phillipson JD. Antimalarial activity of Artemisia annua flavonoids from whole plants and cell cultures. Plant Cell Rep 1992; 11: 637-640
  • 12 Elford BC, Roberts MF, Phillipson JD, Wilson RJM. Potentiation of the antimalarial activity of qinghaosu by methoxylated flavones. Trans Royal Soc Trop Med Hyg 1987; 81: 434-436
  • 13 Bilia AR, Magalhães PM, Bergonzi MC, Vincieri FF. Simultaneous analysis of artemisinin and flavonoids of several extracts of Artemisia annua L obtained from a commercial sample and a selected cultivar. Phytomed 2006; 13: 487-493
  • 14 Daddy NB, Kalisya LM, Bagire PG, Watt RL, Towler MJ, Weathers PJ. Artemisia annua dried leaf tablets treated malaria resistant to ACT and iv artesunate: Case reports. Phytomed 2017; 32: 37-40
  • 15 Frausin G, Hidalgo AF, Lima RBS, Kinupp VF, Ming LC, Pohlit AM, Milliken W. An ethnobotanical study of anti-malarial plants among indigenous people on the upper Negro River in the Brazilian Amazon. J Ethnopharmacol 2015; 174: 238-252
  • 16 Lima RBS, Rocha e Silva LF, MRS Melo, Siqueira JC, Picanço NS, Lima ES, Vasconcellos MC, Boleti APA, Santos JMP, CNA Amorim, FCM Chaves, Coutinho JP, Tadei WP, Krettli AU, Pohlit AM. In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon. Malar J 2015; 14: 508-521
  • 17 Milliken W. Plants for malaria, plants for fever: medicinal species in Latin America - a bibliographic survey. Richmond, UK: The Royal Botanic Gardens. Kew Gardens. 1997; 116:
  • 18 Brandão MGL, Grandi TSM, Rocha EMM, Sawyer RR, Krettli AU. Survey of medicinal plants used as antimalarial in the Amazon. J Ethnopharmacol 1992; 36: 175-182
  • 19 Oliveira FQ, Andrade-Neto V, Krettli AU, Brandão MG. New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. J Ethnopharmacol 2004; 93: 39-42
  • 20 Brandão MGL, Krettli AU, Soares LSR, Nery CGC, Marinuzzi HC. Antimalarial activity of extracts and fractions from Bidens pilosa and other Bidens species (Asteraceae) correlated with the presence of acetylene and flavonoid compounds. J Ethnopharmacol 1997; 57: 131-138
  • 21 Alvarez L, Marquina S, Villareal ML, Alonso D, Aranda E, Delgado G. Bioactive polyacetilenes from Bidens pilosa. Planta Med 1996; 62: 355-357
  • 22 Chien S, Young P, Hsu Y, Chen C, Tien Y, Shiu S, Li T, Yang C, Marimuthu P, Tsai LF, Yang W. Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochemistry 2009; 70: 1246-1254
  • 23 Wang J, Yang H, Lin ZW, Sun HD. Flavonoids from Bidens pilosa var. radiata. Phytochemistry 1997; 46: 1275-1278
  • 24 Kviecinski MR, Benelli P, Felipe KB, Correia JFG, Pitch CT, Ferreira SRS, Pedrosa RC. SFE from Bidens pilosa Linné to obtain extracts rich in cytotoxic polyacetylenes with antitumor activity. J Supercrit Fluids 2011; 56: 243-248
  • 25 Labuza TP, Altunakar B. Water activity prediction and moisture sorption isotherms. In Barbosa-Cánovas GV, Fontana AJ, Schmidt SJ, Labuza TP. Water activity in foods: fundamentals and applications. Ames: Blackwell Publishing; 2007: 109-154
  • 26 Cortés-Rojas DF, Souza CRF, Oliveira WP. Optimization of spray drying conditions for production of Bidens pilosa L. dried extract. Chem Eng Res Des 2015; 93: 366-376
  • 27 Cortés-Rojas DF, Souza CRF, Oliveira WP. Optimization of the extraction of phenolic compounds and antioxidant activity from aerial parts of Bidens pilosa L. using response surface methodology. Int J Food Sci Technol 2011; 16: 2420-2427
  • 28 Patil S, Choudhary B, Rathore A, Roy K, Mahadik K. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomed 2015; 22: 1103-1111
  • 29 Lobo PLD, Fonteles CSR, Marques LARV, Jamacaru FVF, Fonseca SGC, Carvalho CBM, Moraes MEA.. The efficacy of three formulations of Lippia sidoides Cham., essential oil in the reduction of salivary Streptococcus mutans in children with caries: a randomized, double-blind, controlled study. Phytomed 2014; 21: 1043-1047
  • 30 Oliveira OW, Petrovick PR. Secagem por aspersão (spray drying) de extratos vegetais: bases e aplicações. Braz J Pharmacog 2010; 20: 641-650
  • 31 Teixeira HF, Bassani VL. Avaliação da influência de excipientes farmacêuticos sobre as características físicas, químicas, tecnológicas e farmacológicas de extratos secos nebulizados de Achyrocline satureioides (Lam) DC Compositae, Marcela. Caderno de Farmácia 1997; 13: 151-152
  • 32 Krishnaiah D, Sarbatly R, Nithyanandam R. Microencapsulation of Morinda citrifolia L. extract by spray-drying. Chem Eng Res Des 2012; 90: 622-632
  • 33 Andrade-Neto VF, Brandão MGL, Oliveira FQ, Casali VWD, Njaine B, Zalis MG. Oliveira LA, Krettli AU Antimalarial activity of Bidens pilosa L (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil. Phytother Res 2004; 18: 634-639
  • 34 Rowe RC, Sheskey PJ, Owen SC, Quinn ME. Handbook of Pharmaceutical Excipients. 6th Edition. London: Pharmaceutical Press; 2009: 118-121
  • 35 Fernandes LP, Oliveira WP, Sztatisz J, Szilágyi IM, Novák CS. Solid-state studies on molecular inclusions of Lippia sidoides essential oil obtained by spray drying. J Therm Anal Calorim 2009; 95: 855-863
  • 36 Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem 2004; 39: 1033-1046
  • 37 Pereira RL, Ibrahim T, Lucchetti L, Da Silva AJ, Goncalves de Moraes VL. Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Int Immunopharmacol 1999; 43: 31-37
  • 38 Chang SL, Chiang YM, Chang CLT, Yeh HH, Shyur LF, Kuo YH, Wu T. Yang W. Flavonoids, centaurein and centaureindin, from Bidens pilosa, stimulate IFNγ expression. J Ethnopharmacol 2007; 112: 232-236
  • 39 Chang SL, Yeh HH, Lin YS, Chiang YM, Wu TK, Yang WC. The effect of centaurein on interon-gamma expression and Listeria infection in mice. Toxicol Appl Pharmacol 2007; 219: 54-61
  • 40 Peters W. The problem of drug resistance in malaria. Parasitol 1985; 90: 705-715
  • 41 Carvalho LH, Brandão MGL, Santos-Filho D, Lopes JLC, Krettli AU. Antimalarial activity of crude extracts from Brazilian plants in vivo in Plasmodium berghei infected mice and in vitro against Plasmodium falciparum in culture. Braz J Med Biol Res 1991; 24: 1113-1123
  • 42 Oliveira CBS, Meurer YSR, Oliveira MG, Medeiros WMTQ, Silva FON, Brito ACF, Pontes DL, Andrade-Neto VF.. Comparative study on the antioxidant and anti-toxoplasma activities of vanillin and its resorcinarene derivative. Molecules 2014; 19: 5898-5912
  • 43 OECD, The Organization for Economic Co-operation and Development. OECD 425 guideline for testing of chemicals: acute oral toxicity. 2008; 27. Available at https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecdtg425.pd. Accessed on 04/11/2019