Hamostaseologie 2021; 41(02): 128-135
DOI: 10.1055/a-1347-6551
Review Article

Effects and Side Effects of Platelet Transfusion

Fabrice Cognasse
1   Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
2   SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
,
Kathryn Hally
3   Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
4   Wellington Cardiovascular Research Group, Wellington, New Zealand
5   School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
,
Sebastien Fauteux-Daniel
1   Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
2   SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
,
Marie-Ange Eyraud
1   Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
2   SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
,
Charles-Antoine Arthaud
1   Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
2   SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
,
Jocelyne Fagan
1   Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
2   SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
,
Patrick Mismetti
2   SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
,
Hind Hamzeh-Cognasse
2   SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
,
Sandrine Laradi
1   Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
2   SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
,
Olivier Garraud
2   SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
,
Peter Larsen
3   Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
4   Wellington Cardiovascular Research Group, Wellington, New Zealand
5   School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
› Author Affiliations

Abstract

Aside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.



Publication History

Received: 15 September 2020

Accepted: 07 January 2021

Article published online:
12 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Clemetson KJ. Platelets and primary haemostasis. Thromb Res 2012; 129 (03) 220-224
  • 2 Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, Larsen P, Cognasse F. Revisiting platelets and toll-like receptors (TLRs): at the interface of vascular immunity and thrombosis. Int J Mol Sci 2020; 21 (17) E6150
  • 3 Cognasse F, Laradi S, Berthelot P. et al. Platelet inflammatory response to stress. Front Immunol 2019; 10: 1478
  • 4 Deppermann C, Kubes P. Start a fire, kill the bug: the role of platelets in inflammation and infection. Innate Immun 2018; 24 (06) 335-348
  • 5 Margraf A, Zarbock A. Platelets in inflammation and resolution. J Immunol 2019; 203 (09) 2357-2367
  • 6 Rossaint J, Margraf A, Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation. Front Immunol 2018; 9: 2712
  • 7 Sut C, Tariket S, Aubron C. et al. The non-hemostatic aspects of transfused platelets. Front Med (Lausanne) 2018; 5: 42
  • 8 Nguyen KA, Hamzeh-Cognasse H, Palle S. et al. Role of Siglec-7 in apoptosis in human platelets. PLoS One 2014; 9 (09) e106239
  • 9 Cognasse F, Nguyen KA, Damien P. et al. The inflammatory role of platelets via their TLRs and Siglec receptors. Front Immunol 2015; 6: 83
  • 10 Shiraki R, Inoue N, Kawasaki S. et al. Expression of toll-like receptors on human platelets. Thromb Res 2004; 113 (06) 379-385
  • 11 Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P. Platelets express functional Toll-like receptor-4. Blood 2005; 106 (07) 2417-2423
  • 12 Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 2005; 83 (02) 196-198
  • 13 Aslam R, Speck ER, Kim M. et al. Platelet toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 2006; 107 (02) 637-641
  • 14 D'Atri LP, Schattner M. Platelet toll-like receptors in thromboinflammation. Front Biosci 2017; 22: 1867-1883
  • 15 Hamzeh-Cognasse H, Berthelot P, Tardy B. et al. Platelet toll-like receptors are crucial sensors of infectious danger moieties. Platelets 2018; 29 (06) 533-540
  • 16 Alonso AL, Cox D. Platelet interactions with viruses and parasites. Platelets 2015; 26 (04) 317-323
  • 17 Burkhart JM, Vaudel M, Gambaryan S. et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120 (15) e73-e82
  • 18 Burkhart JM, Gambaryan S, Watson SP. et al. What can proteomics tell us about platelets?. Circ Res 2014; 114 (07) 1204-1219
  • 19 Aloui C, Barlier C, Claverol S. et al. Differential protein expression of blood platelet components associated with adverse transfusion reactions. J Proteomics 2019; 194: 25-36
  • 20 Refaai MA, Phipps RP, Spinelli SL, Blumberg N. Platelet transfusions: impact on hemostasis, thrombosis, inflammation and clinical outcomes. Thromb Res 2011; 127 (04) 287-291
  • 21 Sahler J, Spinelli S, Phipps R, Blumberg N. CD40 ligand (CD154) involvement in platelet transfusion reactions. Transfus Clin Biol 2012; 19 (03) 98-103
  • 22 Stolla M, Refaai MA, Heal JM. et al. Platelet transfusion - the new immunology of an old therapy. Front Immunol 2015; 6: 28
  • 23 Chen C, Li Y, Yu Z. et al. Platelet activity in the pathophysiology of inflammatory bowel diseases. Curr Drug Targets 2015; 16 (03) 219-225
  • 24 Algahtani M, Heptinstall S. Novel strategies for assessing platelet reactivity. Future Cardiol 2017; 13 (01) 33-47
  • 25 Au AE, Josefsson EC. Regulation of platelet membrane protein shedding in health and disease. Platelets 2017; 28 (04) 342-353
  • 26 van Velzen JF, Laros-van Gorkom BA, Pop GA, van Heerde WL. Multicolor flow cytometry for evaluation of platelet surface antigens and activation markers. Thromb Res 2012; 130 (01) 92-98
  • 27 Sut C, Tariket S, Aloui C. et al. Soluble CD40L and CD62P levels differ in single-donor apheresis platelet concentrates and buffy coat-derived pooled platelet concentrates. Transfusion 2019; 59 (01) 16-20
  • 28 Brandt E, Ludwig A, Petersen F, Flad HD. Platelet-derived CXC chemokines: old players in new games. Immunol Rev 2000; 177: 204-216
  • 29 Fleischer J, Grage-Griebenow E, Kasper B. et al. Platelet factor 4 inhibits proliferation and cytokine release of activated human T cells. J Immunol 2002; 169 (02) 770-777
  • 30 von Hundelshausen P, Petersen F, Brandt E. Platelet-derived chemokines in vascular biology. Thromb Haemost 2007; 97 (05) 704-713
  • 31 Petersen F, Bock L, Flad HD, Brandt E. Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood 1999; 94 (12) 4020-4028
  • 32 Petersen F, Spillmann D, Scheuerer B, Fleischer J, Flad HD, Brandt E. Is platelet factor-4 a chemokine?. Eur Cytokine Netw 2000; 11 (03) 506-507
  • 33 Romagnani P, Maggi L, Mazzinghi B. et al. CXCR3-mediated opposite effects of CXCL10 and CXCL4 on TH1 or TH2 cytokine production. J Allergy Clin Immunol 2005; 116 (06) 1372-1379
  • 34 Yu G, Rux AH, Ma P, Bdeir K, Sachais BS. Endothelial expression of E-selectin is induced by the platelet-specific chemokine platelet factor 4 through LRP in an NF-kappaB-dependent manner. Blood 2005; 105 (09) 3545-3551
  • 35 Apelseth TO, Hervig TA, Wentzel-Larsen T, Bruserud O. Cytokine accumulation in photochemically treated and gamma-irradiated platelet concentrates during storage. Transfusion 2006; 46 (05) 800-810
  • 36 Karshovska E, Weber C, von Hundelshausen P. Platelet chemokines in health and disease. Thromb Haemost 2013; 110 (05) 894-902
  • 37 von Hundelshausen P, Schmitt MM. Platelets and their chemokines in atherosclerosis-clinical applications. Front Physiol 2014; 5: 294
  • 38 Weyrich AS, Elstad MR, McEver RP. et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest 1996; 97 (06) 1525-1534
  • 39 Gear AR, Camerini D. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation 2003; 10 (3-4): 335-350
  • 40 Fujihara M, Ikebuchi K, Wakamoto S, Sekiguchi S. Effects of filtration and gamma radiation on the accumulation of RANTES and transforming growth factor-beta1 in apheresis platelet concentrates during storage. Transfusion 1999; 39 (05) 498-505
  • 41 Wakamoto S, Fujihara M, Kuzuma K. et al. Biologic activity of RANTES in apheresis PLT concentrates and its involvement in nonhemolytic transfusion reactions. Transfusion 2003; 43 (08) 1038-1046
  • 42 Savage WJ, Savage JH, Tobian AA. et al. Allergic agonists in apheresis platelet products are associated with allergic transfusion reactions. Transfusion 2012; 52 (03) 575-581
  • 43 Nogawa M, Naito Y, Chatani M. et al. Parallel comparison of apheresis-collected platelet concentrates stored in four different additive solutions. Vox Sang 2013; 105 (04) 305-312
  • 44 Lannan KL, Sahler J, Kim N. et al. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles. Front Immunol 2015; 6: 48
  • 45 Boilard E, Duchez AC, Brisson A. The diversity of platelet microparticles. Curr Opin Hematol 2015; 22 (05) 437-444
  • 46 Nomura S, Fujita S, Nakanishi T. et al. Platelet-derived microparticles cause CD154-dependent activation of dendritic cells. Platelets 2012; 23 (01) 81-82
  • 47 Dong JF. Platelet microparticles are not created equal. Blood 2014; 124 (14) 2161-2162
  • 48 Marcoux G, Magron A, Sut C. et al. Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions. Transfusion 2019; 59 (07) 2403-2414
  • 49 Cognasse F, Aloui C, Anh Nguyen K. et al. Platelet components associated with adverse reactions: predictive value of mitochondrial DNA relative to biological response modifiers. Transfusion 2016; 56 (02) 497-504
  • 50 Elzey BD, Ratliff TL, Sowa JM, Crist SA. Platelet CD40L at the interface of adaptive immunity. Thromb Res 2011; 127 (03) 180-183
  • 51 Davì G, Ferroni P. CD40-CD40L interactions in platelet activation. Thromb Haemost 2005; 93 (06) 1011-1012
  • 52 Tariket S, Sut C, Hamzeh-Cognasse H, Laradi S, Garraud O, Cognasse F. Platelet and TRALI: from blood component to organism. Transfus Clin Biol 2018; 25 (03) 204-209
  • 53 Iannacone M. Platelet-mediated modulation of adaptive immunity. Semin Immunol 2016; 28 (06) 555-560
  • 54 Pamukcu B, Lip GY, Snezhitskiy V, Shantsila E. The CD40-CD40L system in cardiovascular disease. Ann Med 2011; 43 (05) 331-340
  • 55 Duffau P, Seneschal J, Nicco C. et al. Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med 2010; 2 (47) 47ra63
  • 56 Yazdany J, Davis J. The role of CD40 ligand in systemic lupus erythematosus. Lupus 2004; 13 (05) 377-380
  • 57 Cognasse F, Sut C, Fromont E, Laradi S, Hamzeh-Cognasse H, Garraud O. Platelet soluble CD40-ligand level is associated with transfusion adverse reactions in a mixed threshold-and-hit model. Blood 2017; 130 (11) 1380-1383
  • 58 Garraud O, Tariket S, Sut C. et al. Transfusion as an inflammation hit: knowns and unknowns. Front Immunol 2016; 7: 534
  • 59 Garraud O, Cognasse F, Tissot JD. et al. Improving platelet transfusion safety: biomedical and technical considerations. Blood Transfus 2016; 14 (02) 109-122
  • 60 Savage WJ. Transfusion reactions. Hematol Oncol Clin North Am 2016; 30 (03) 619-634
  • 61 Frazier SK, Higgins J, Bugajski A, Jones AR, Brown MR. Adverse reactions to transfusion of blood products and best practices for prevention. Crit Care Nurs Clin North Am 2017; 29 (03) 271-290
  • 62 Kreuger AL, Caram-Deelder C, Jacobse J, Kerkhoffs JL, van der Bom JG, Middelburg RA. Effect of storage time of platelet products on clinical outcomes after transfusion: a systematic review and meta-analyses. Vox Sang 2017; 112 (04) 291-300
  • 63 Edelstein SB. Blood product storage: does age really matter?. Semin Cardiothorac Vasc Anesth 2012; 16 (03) 160-165
  • 64 Morrell CN. Immunomodulatory mediators in platelet transfusion reactions. Hematology (Am Soc Hematol Educ Program) 2011; 2011: 470-474
  • 65 Ng MSY, Tung JP, Fraser JF. Platelet storage lesions: What more do we know now?. Transfus Med Rev 2018; 32 (03) 144-154
  • 66 Adams F, Bellairs G, Bird AR, Oguntibeju OO. Biochemical storage lesions occurring in nonirradiated and irradiated red blood cells: a brief review. [Review] BioMed Res Int 2015; 2015: 968302
  • 67 Devine DV, Serrano K. The platelet storage lesion. Clin Lab Med 2010; 30 (02) 475-487
  • 68 Jain A, Marwaha N, Sharma RR, Kaur J, Thakur M, Dhawan HK. Serial changes in morphology and biochemical markers in platelet preparations with storage. Asian J Transfus Sci 2015; 9 (01) 41-47
  • 69 van der Meer PF, de Korte D. Platelet additive solutions: a review of the latest developments and their clinical implications. Transfus Med Hemother 2018; 45 (02) 98-102
  • 70 Schubert P, Johnson L, Marks DC, Devine DV. Ultraviolet-based pathogen inactivation systems: untangling the molecular targets activated in platelets. Front Med (Lausanne) 2018; 5: 129
  • 71 Prudent M, D'Alessandro A, Cazenave JP. et al. Proteome changes in platelets after pathogen inactivation--an interlaboratory consensus. Transfus Med Rev 2014; 28 (02) 72-83
  • 72 Feys HB, Van Aelst B, Compernolle V. Biomolecular consequences of platelet pathogen inactivation methods. Transfus Med Rev 2019; 33 (01) 29-34
  • 73 Nguyen KA, Chavarin P, Arthaud CA, Cognasse F, Garraud O. Do manual and automated processes with distinct additive solutions affect whole blood-derived platelet components differently?. Blood Transfus 2013; 11 (01) 152-153
  • 74 Macher S, Sipurzynski-Budrass S, Rosskopf K. et al. Function and activation state of platelets in vitro depend on apheresis modality. Vox Sang 2010; 99 (04) 332-340
  • 75 Black A, Orsó E, Kelsch R. et al. Analysis of platelet-derived extracellular vesicles in plateletpheresis concentrates: a multicenter study. Transfusion 2017; 57 (06) 1459-1469
  • 76 Kamhieh-Milz J, Mustafa SA, Sterzer V. et al. Secretome profiling of apheresis platelet supernatants during routine storage via antibody-based microarray. J Proteomics 2017; 150: 74-85
  • 77 Noulsri E, Udomwinijsilp P, Lerdwana S, Chongkolwatana V, Permpikul P. Differences in levels of platelet-derived microparticles in platelet components prepared using the platelet rich plasma, buffy coat, and apheresis procedures. Transfus Apheresis Sci 2017; 56 (02) 135-140
  • 78 Maurer-Spurej E, Larsen R, Labrie A, Heaton A, Chipperfield K. Microparticle content of platelet concentrates is predicted by donor microparticles and is altered by production methods and stress. Transfus Apheresis Sci 2016; 55 (01) 35-43
  • 79 Sandgren P, Berlin G, Tynngård N. Treatment of platelet concentrates with ultraviolet C light for pathogen reduction increases cytokine accumulation. Transfusion 2016; 56 (06) 1377-1383
  • 80 Wadhwa M, Krailadsiri P, Dilger P, Gaines Das R, Seghatchian MJ, Thorpe R. Cytokine levels as performance indicators for white blood cell reduction of platelet concentrates. Vox Sang 2002; 83 (02) 125-136
  • 81 Garraud O, Sut C, Haddad A. et al. Transfusion-associated hazards: a revisit of their presentation. Transfus Clin Biol 2018; 25 (02) 118-135
  • 82 Cognasse F, Boussoulade F, Chavarin P. et al. Release of potential immunomodulatory factors during platelet storage. Transfusion 2006; 46 (07) 1184-1189
  • 83 Aloui C, Prigent A, Sut C. et al. The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int J Mol Sci 2014; 15 (12) 22342-22364
  • 84 Leitner GC, List J, Horvath M, Eichelberger B, Panzer S, Jilma-Stohlawetz P. Additive solutions differentially affect metabolic and functional parameters of platelet concentrates. Vox Sang 2016; 110 (01) 20-26
  • 85 van der Meer PF. PAS or plasma for storage of platelets? A concise review. Transfus Med 2016; 26 (05) 339-342
  • 86 Daurat A, Roger C, Gris J. et al. Apheresis platelets are more frequently associated with adverse reactions than pooled platelets both in recipients and in donors: a study from French hemovigilance data. Transfusion 2016; 56 (06) 1295-1303
  • 87 Vassallo RR, Adamson JW, Gottschall JL. et al. In vitro and in vivo evaluation of apheresis platelets stored for 5 days in 65% platelet additive solution/35% plasma. Transfusion 2010; 50 (11) 2376-2385
  • 88 Diedrich B, Sandgren P, Jansson B, Gulliksson H, Svensson L, Shanwell A. In vitro and in vivo effects of potassium and magnesium on storage up to 7 days of apheresis platelet concentrates in platelet additive solution. Vox Sang 2008; 94 (02) 96-102
  • 89 Shanwell A, Diedrich B, Falker C. et al. Paired in vitro and in vivo comparison of apheresis platelet concentrates stored in platelet additive solution for 1 versus 7 days. Transfusion 2006; 46 (06) 973-979
  • 90 Phipps RP, Kaufman J, Blumberg N. Platelet derived CD154 (CD40 ligand) and febrile responses to transfusion. Lancet 2001; 357 (9273): 2023-2024
  • 91 Blumberg N, Heal JM, Phillips GL, Phipps RP. Platelets--to transfuse or not to transfuse. Lancet 2012; 380 (9850): 1287-1289
  • 92 Garraud O, Cognasse F, Hamzeh-Cognasse H, Spinelli S, Phipps RP, Blumberg N. Removal of biologic response modifiers associated with platelet transfusion reactions: strategies worth considering?. Transfusion 2014; 54 (10) 2583
  • 93 Blumberg N, Cholette JM, Cahill C. et al. Transfusion medicine: a research agenda for the coming years. Transfus Apheresis Sci 2019; 58 (05) 698-700
  • 94 Hamzeh-Cognasse H, Damien P, Nguyen KA. et al. Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions. Transfusion 2014; 54 (03) 613-625
  • 95 Nguyen KA, Hamzeh-Cognasse H, Sebban M. et al. A computerized prediction model of hazardous inflammatory platelet transfusion outcomes. PLoS One 2014; 9 (05) e97082
  • 96 Yasui K, Matsuyama N, Kuroishi A, Tani Y, Furuta RA, Hirayama F. Mitochondrial damage-associated molecular patterns as potential proinflammatory mediators in post-platelet transfusion adverse effects. Transfusion 2016; 56 (05) 1201-1212
  • 97 Yang L, Yang D, Yang Q, Cheng F, Huang Y. Extracellular DNA in blood products and its potential effects on transfusion. Biosci Rep 2020; 40 (03) BSR20192770
  • 98 Li H, Liu D, Lu J, Bai Y. Physiology and pathophysiology of mitochondrial DNA. Adv Exp Med Biol 2012; 942: 39-51
  • 99 Boudreau LH, Duchez AC, Cloutier N. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 2014; 124 (14) 2173-2183
  • 100 Burnouf T, Chou ML, Goubran H, Cognasse F, Garraud O, Seghatchian J. An overview of the role of microparticles/microvesicles in blood components: Are they clinically beneficial or harmful?. Transfus Apheresis Sci 2015; 53 (02) 137-145
  • 101 Goubran H, Sheridan D, Radosevic J, Burnouf T, Seghatchian J. Transfusion-related immunomodulation and cancer. Transfus Apheresis Sci 2017; 56 (03) 336-340
  • 102 Osman A, Hitzler WE, Meyer CU. et al. Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function. Platelets 2015; 26 (02) 154-163
  • 103 Diallo I, Benmoussa A, Laugier J, Osman A, Hitzler WE, Provost P. Platelet pathogen reduction technologies alter the microRNA profile of platelet-derived microparticles. Front Cardiovasc Med 2020; 7: 31
  • 104 Cognasse F, Sut C, Hamzeh-Cognasse H, Garraud O. Platelet-derived HMGB1: critical mediator of SARs related to transfusion. Ann Transl Med 2020; 8 (04) 140
  • 105 Kwak MS, Kim HS, Lee B, Kim YH, Son M, Shin JS. Immunological significance of HMGB1 post-translational modification and redox biology. Front Immunol 2020; 11: 1189
  • 106 Raucci A, Di Maggio S, Scavello F, D'Ambrosio A, Bianchi ME, Capogrossi MC. The Janus face of HMGB1 in heart disease: a necessary update. Cell Mol Life Sci 2019; 76 (02) 211-229
  • 107 Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol 2018; 38: 40-48
  • 108 Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med 2008; 14 (7-8): 476-484
  • 109 Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 2012; 34 (01) 5-30
  • 110 Highton PJ, Martin N, Smith AC, Burton JO, Bishop NC. Microparticles and Exercise in Clinical Populations. Exerc Immunol Rev 2018; 24: 46-58
  • 111 Melki I, Tessandier N, Zufferey A, Boilard E. Platelet microvesicles in health and disease. Platelets 2017; 28 (03) 214-221
  • 112 Vafeiadou K, Weech M, Sharma V. et al. A review of the evidence for the effects of total dietary fat, saturated, monounsaturated and n-6 polyunsaturated fatty acids on vascular function, endothelial progenitor cells and microparticles. Br J Nutr 2012; 107 (03) 303-324
  • 113 André P. P-selectin in haemostasis. Br J Haematol 2004; 126 (03) 298-306
  • 114 Vandendries ER, Furie BC, Furie B. Role of P-selectin and PSGL-1 in coagulation and thrombosis. Thromb Haemost 2004; 92 (03) 459-466
  • 115 Woollard KJ, Chin-Dusting J. P-selectin antagonism in inflammatory disease. Curr Pharm Des 2010; 16 (37) 4113-4118
  • 116 Antonopoulos CN, Sfyroeras GS, Kakisis JD, Moulakakis KG, Liapis CD. The role of soluble P selectin in the diagnosis of venous thromboembolism. Thromb Res 2014; 133 (01) 17-24
  • 117 Kutlar A, Embury SH. Cellular adhesion and the endothelium: P-selectin. Hematol Oncol Clin North Am 2014; 28 (02) 323-339
  • 118 Abadier M, Ley K. P-selectin glycoprotein ligand-1 in T cells. Curr Opin Hematol 2017; 24 (03) 265-273
  • 119 Mattioli AV. Prevalence of anti-PF4/heparin antibodies and the HIT syndrome in cardiovascular medicine. Semin Thromb Hemost 2004; 30 (03) 291-295
  • 120 Aidoudi S, Bikfalvi A. Interaction of PF4 (CXCL4) with the vasculature: a role in atherosclerosis and angiogenesis. Thromb Haemost 2010; 104 (05) 941-948
  • 121 Kowalska MA, Rauova L, Poncz M. Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. Thromb Res 2010; 125 (04) 292-296
  • 122 Pilatova K, Greplova K, Demlova R, Bencsikova B, Klement GL, Zdrazilova-Dubska L. Role of platelet chemokines, PF-4 and CTAP-III, in cancer biology. J Hematol Oncol 2013; 6: 42
  • 123 Appay V, Rowland-Jones SL. RANTES: a versatile and controversial chemokine. Trends Immunol 2001; 22 (02) 83-87
  • 124 Conti P, DiGioacchino M. MCP-1 and RANTES are mediators of acute and chronic inflammation. Allergy Asthma Proc 2001; 22 (03) 133-137
  • 125 Vangelista L, Secchi M, Lusso P. Rational design of novel HIV-1 entry inhibitors by RANTES engineering. Vaccine 2008; 26 (24) 3008-3015
  • 126 Levy JA. The unexpected pleiotropic activities of RANTES. J Immunol 2009; 182 (07) 3945-3946
  • 127 Morel O, Morel N, Freyssinet JM, Toti F. Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses. Platelets 2008; 19 (01) 9-23
  • 128 Burnouf T, Goubran HA, Chou ML, Devos D, Radosevic M. Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev 2014; 28 (04) 155-166
  • 129 Johnson L, Raynel S, Seghatchian J, Marks DC. Platelet microparticles in cryopreserved platelets: potential mediators of haemostasis. Transfus Apheresis Sci 2015; 53 (02) 146-152
  • 130 Żmigrodzka M, Guzera M, Miśkiewicz A, Jagielski D, Winnicka A. The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression. Tumour Biol 2016; 37 (11) 14391-14401
  • 131 Chen F, Liao Z, Peng D, Han L. Role of platelet microparticles in blood diseases: future clinical perspectives. Ann Clin Lab Sci 2019; 49 (02) 161-170
  • 132 Zhang B, Wu T, Chen M, Zhou Y, Yi D, Guo R. The CD40/CD40L system: a new therapeutic target for disease. Immunol Lett 2013; 153 (1-2): 58-61
  • 133 Laman JD, Claassen E, Noelle RJ. Functions of CD40 and its ligand, gp39 (CD40L). Crit Rev Immunol 2017; 37 (2-6): 371-420
  • 134 Michel NA, Zirlik A, Wolf D. CD40L and its receptors in atherothrombosis-an update. Front Cardiovasc Med 2017; 4: 40
  • 135 Karnell JL, Rieder SA, Ettinger R, Kolbeck R. Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv Drug Deliv Rev 2019; 141: 92-103
  • 136 Bosmans LA, Bosch L, Kusters PJH, Lutgens E, Seijkens TTP. The CD40-CD40L dyad as immunotherapeutic target in cardiovascular disease. J Cardiovasc Transl Res 2020; ; (epub ahead of print) DOI: 10.1007/s12265-020-09994-3.
  • 137 Daub S, Lutgens E, Münzel T, Daiber A. CD40/CD40L and related signaling pathways in cardiovascular health and disease-the pros and cons for cardioprotection. Int J Mol Sci 2020; 21 (22) E8533