Subscribe to RSS
DOI: 10.1055/a-1344-0777
Jenseits der antinutritiven Eigenschaften von Gerbstoffen
Neue Untersuchungen zur Wirkung an FerkelnZusammenfassung
Obwohl gerbstoffhaltigen Pflanzenmaterialien zugeschrieben wird, über antidiarrhöische Eigenschaften zu verfügen und das Wachstum einiger pathogener Mikroorganismen zu hemmen, wurde ihre Anwendung in der Ferkelernährung aufgrund der antinutritiven Eigenschaften vermieden. Der jahrzehntelange ausgedehnte Einsatz von Antibiotika zur Vorbeugung und Therapie von Infektionen bei Tieren hat wesentlich zur Ausbreitung der antimikrobiellen Resistenz beigetragen und in der Folge zu Einschränkungen beim Einsatz in der Landwirtschaft geführt. Als Konsequenz ist die Entwicklung von präventiven und therapeutischen Strategien zur Erhaltung der Darmgesundheit von Ferkeln, die auf neuartigen Mechanismen basieren, dringend erforderlich.
Aktuelle Fortschritte in den Analysemethoden ermöglichen eine gründliche strukturelle Charakterisierung der Gerbstoffzusammensetzung und biologischen Aktivitäten, was eine standardisierte Verwendung und präzise Dosierung von Phytopharmaka, die hydrolysierbare und kondensierte Gerbstoffe enthalten, ermöglicht. Als Konsequenz kann die Nutzung ihrer biologischen Eigenschaften in der Tierernährung mit voller Kontrolle über unerwünschte Nebenwirkungen potenziell erreicht werden. Darüber hinaus werfen Studien zur Interaktion mit der Darmmikrobiota ein neues Licht auf den Metabolismus und die Disposition von Gerbstoffen und bieten die Möglichkeit, neue Erkenntnisse über die Mechanismen ihrer biologischen Aktivitäten zu gewinnen.
Abstract
Beyond the anti-nutritional properties of tannins: New studies on the effect on piglets
Although plant materials containing tannins are attributed to express antidiarrheal properties and to inhibit the growth of some pathogenic microorganisms, their application in piglet nutrition has been avoided due to their antinutritional properties. Decades of extensive use of antibiotics in the prevention and treatment of infections in livestock have significantly contributed to the spread of antimicrobial resistance and led to the restrictions on their use in farming. As a consequence, the development of preventive and therapeutic strategies to maintain intestinal health in piglets based on novel mechanisms is urgently needed. Recent advances in analytical methods allowed thorough structural characterization of tannins composition and biological activities, enabling the standardized use and precise dosing of plant materials containing hydrolysable or condensed tannins. Thus, the application of their biological properties in animal nutrition can potentially be achieved with full control over undesirable side effects. In addition, studies on the interaction with the gut microbiota shine a new light on the metabolism and disposition of tannins and offer the possibilities of gaining new perspective on the mechanisms of their biological activities.
Publication History
Article published online:
15 February 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Adamczyk B, Simon J, Kitunen V. et al. Tannins and their complex interaction with different organic nitrogen compounds and enzymes: Old paradigms versus recent advances. ChemistryOpen 2017; 6: 610-614. DOI: 10.1002/open.201700113.
- 2 Antongiovanni M, Minieri S, Petacchi F. Effect of tannin supplementation on nitrogen digestibility and retention in growing pigs. Ital J Anim Sci 2007; 6: 245-247. DOI: 10.4081 / ijas.2007.1s.245.
- 3 Auzanneau C, Montaudon D, Jacquet R. et al. The polyphenolic ellagitannin vescalagin acts as a preferential catalytic inhibitor of the alpha isoform of human DNA topoisomerase II. Mol Pharmacol 2012; 82: 134-141. DOI: 10.1124/mol.111.077537.
- 4 Bobowska A, Granica S, Filipek A. et al. Comparative studies of urolithins and their phase II metabolites on macrophage and neutrophil functions. Eur J Nutr 2020 in press:. DOI: 10.1007/s00394-020-02386-y
- 5 Bruins MJ, Vente-Spreeuwenberg MA, Smits CH, Frenken LG. Black tea reduces diarrhoea prevalence but decreases growth performance in enterotoxigenic Escherichia coli-infected post-weaning piglets. J Anim Physiol Anim Nutr (Berl) 2011; 95: 388-398. DOI: 10.1111/j.1439-0396.2010.01066.x.
- 6 Butler LG. Antinutritional effects of condensed and hydrolyzable tannins. Basic Life Sci 1992; 59: 693-698. DOI: 10.1007/978-1-4615-3476-1_40.
- 7 Cantos E, Espin JC, Lopez-Bote C. et al. Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs. J Agric Food Chem 2003; 51: 6248-6255. DOI: 10.1021/jf030216v.
- 8 Cassir N, Rolain JM, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microbiol 2014; 5: 551. DOI: 10.3389/fmicb.2014.00551.
- 9 Cousins BW, Tanksley TD Jr, Knabe DA, Zebrowska T. Nutrient digestibility and performance of pigs fed sorghums varying in tannin concentration. J Anim Sci 1981; 53: 1524-1537. DOI: 10.2527/jas1982.5361524x.
- 10 Croxen MA, Law RJ, Scholz R. et al. Recent advances in understanding enteric pathogenic Escherichia coli . Clin Microbiol Rev 2013; 26: 822-880. DOI: 10.1128/CMR.00022-13.
- 11 Dadi TH, Vahjen W, Zentek J. et al. Lythrum salicaria L. herb and gut microbiota of healthy post-weaning piglets. Focus on prebiotic properties and formation of postbiotic metabolites in ex vivo cultures. J Ethnopharmacol 2020; 261: 113073. DOI: 10.1016/j.jep.2020.113073.
- 12 Espin JC, Gonzalez-Barrio R, Cerda B. et al. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J Agric Food Chem 2007; 55: 10476-10485. DOI: 10.1021 / jf0723864.
- 13 Ferguson NS, Gous RM, Iji PA. Determining the source of anti-nutritional factor(s) found in two species of lupin (L-albus and L-angustifolius) fed to growing pigs. Livest Prod Sci 2003; 84: 83-91. DOI: 10.1016/S0301-6226(03)00052-6.
- 14 Girard M, Thanner S, Pradervand N. et al. Hydrolysable chestnut tannins for reduction of postweaning diarrhea: Efficacy on an experimental ETEC F4 model. PLoS One 2018; 13: e0197878. DOI: 10.1371/journal.pone.0197878.
- 15 Girard M, Bee G. Invited review: Tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs. Animal 2020; 14: 95-107. DOI: 10.1017/S1751731119002143.
- 16 Granica S, Vahjen W, Zentek J. et al. Lythrum salicaria L. ellagitannins stimulate IPEC-J2 cells monolayer formation and inhibit enteropathogenic Escherichia coli growth and adhesion. J Nat Prod 2020; 83: 3614-3622. DOI: 10.1021/acs.jnatprod.0c00776.
- 17 Gyles CL, Prescott JF, Songer JG, Thoen CO. Pathogenesis of Bacterial Infections in Animals. 4th ed. Wiley-Blackwell Publishing: 2010
- 18 Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14: 111-129. DOI: 10.1038/nrd4510.
- 19 Huang Q, Liu X, Zhao G, Hu T, Wang Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim Nutr 2018; 4: 137-150. DOI: 10.1016/j.aninu.2017.09.004.
- 20 Jukes TH, Stokstad ELR, Taylor RR. et al. GROWTH-promoting effect of aureomycin on pigs. Arch Biochem 1950; 26: 324-325
- 21 Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 2013; 13: 321-335. DOI: 10.1038/nri3430.
- 22 Lee SH, Shinde PL, Choi JY. et al. Effects of tannic acid supplementation on growth performance, blood hematology, iron status and faecal microflora in weanling pigs. Livest Sci 2010; 131: 281-286. DOI: 10.1016/j.livsci.2010.04.013.
- 23 Lekagul A, Tangcharoensathien V, Yeung S. Patterns of antibiotic use in global pig production: A systematic review. Vet Anim Sci 2019; 7: 100058. DOI: 10.1016/j.vas.2019.100058.
- 24 Mangan JL. Nutritional effects of tannins in animal feeds. Nutr Res Rev 1988; 1: 209-239. DOI: 10.1079/NRR19880015.
- 25 Mariscal-Landin G, Lebreton Y, Seve B. Apparent and standardised true ileal digestibility of protein and amino acids from faba bean, lupin and pea, provided as whole seeds, dehulled or extruded in pig diets. Anim Feed Sci Tech 2002; 97: 183-198. DOI: 10.1016/S0377-8401(01)00354-6.
- 26 McAllister TA, Martinez T, Bae HD. et al. Characterization of condensed tannins purified from legume forages: chromophore production, protein precipitation, and inhibitory effects on cellulose digestion. J Chem Ecol 2005; 31: 2049-2068. DOI: 10.1007/s10886-005-6077-4.
- 27 Mena P, Bresciani L, Brindani N. et al. Phenyl-gamma-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep 2019; 36: 714-752. DOI: 10.1039/c8np00062j.
- 28 Mueller-Harvey I. Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agr 2006; 86: 2010-2037. DOI: 10.1002/jsfa.2577.
- 29 Nagy B, Fekete PZ. Enterotoxigenic Escherichia coliin veterinary medicine. Int J Med Microbiol 2005; 295: 443-454. DOI: 10.1016/j.ijmm.2005.07.003.
- 30 Piwowarski JP, Kiss AK, Kozlowska-Wojciechowska M. Anti-hyaluronidase and anti-elastase activity screening of tannin-rich plant materials used in traditional Polish medicine for external treatment of diseases with inflammatory background. J Ethnopharmacol 2011; 137: 937-941. DOI: 10.1016/j.jep.2011.05.039.
- 31 Piwowarski JP, Granica S, Zwierzynska M. et al. Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials. J Ethnopharmacol 2014; 155: 801-809. DOI: 10.1016/j.jep.2014.06.032.
- 32 Piwowarski JP, Granica S, Kiss AK. Lythrum salicaria L. - Underestimated medicinal plant from European traditional medicine. A review. J Ethnopharmacol 2015; 170: 226-250. DOI: 10.1016/j.jep.2015.05.017.
- 33 Piwowarski JP, Kiss AK. Contribution of C-glucosidic ellagitannins to Lythrum salicaria L. influence on pro-inflammatory functions of human neutrophils. J Nat Med 2015; 69: 100-110. DOI: 10.1007/s11418-014-0873-5.
- 34 Piwowarski JP, Granica S, Stefanska J, Kiss AK. Differences in metabolism of ellagitannins by human gut microbiota ex vivo cultures. J Nat Prod 2016; 79: 3022-3030. DOI: 10.1021/acs.jnatprod.6b00602.
- 35 Piwowarski JP, Stanislawska I, Granica S. et al. Phase II conjugates of urolithins isolated from human urine and potential role of beta-glucuronidases in their disposition. Drug Metab Dispos 2017; 45: 657-665. DOI: 10.1124/dmd.117.075200.
- 36 Redondo LM, Chacana PA, Dominguez JE, Fernandez Miyakawa ME. Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors in poultry. Front Microbiol 2014; 5: 118. DOI: 10.3389/fmicb.2014.00118.
- 37 Stukelj M, Valencak Z, Krsnik M, Svete AN. The effect of the combination of acids and tannin in diet on the performance and selected biochemical, haematological and antioxidant enzyme parameters in grower pigs. Acta Vet Scand 2010; 52: 19. DOI: 10.1186/1751-0147-52-19.
- 38 Tomas-Barberan FA, Gonzalez-Sarrias A, Garcia-Villalba R. et al. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res. 2017 61. (1). DOI: doi:10.1002/mnfr.201500901
- 39 Van der Poel AF, Dellaert LM, Van Norel A, Helsper JP. The digestibility in piglets of faba bean (Vicia faba L.) as affected by breeding towards the absence of condensed tannins. Br J Nutr 1992; 68: 793-800. DOI: 10.1079/bjn19920134.
- 40 Xiong X, Tan B, Song M. et al. Nutritional intervention for the intestinal development and health of weaned pigs. Front Vet Sci 2019; 6: 46. DOI: 10.3389/fvets.2019.00046.
- 41 Yamada H, Wakamori S, Hirokane T. et al. Structural revisions in natural ellagitannins. Molecules 2018; 23: 1901. DOI: 10.3390/molecules23081901.
- 42 Zhang L, Wang Y, Li D. et al. The absorption, distribution, metabolism and excretion of procyanidins. Food Funct 2016; 7: 1273-1281. DOI: 10.1039/c5fo01244a.