Gesundheitswesen 2021; 83(03): 180-185
DOI: 10.1055/a-1335-4549
Übersichtsarbeit

Ist die Desinfektion öffentlicher Flächen zur Prävention von SARS-CoV-2 – infektionen sinnvoll?

Is Disinfection of Public Surfaces useful for the Prevention of SARS-CoV-2 Infections?
Günter Kampf
1   Institut für Hygiene und Umweltmedizin, Universitätsmedizin Greifswald, Greifswald, Deutschland
,
Lutz Jatzwauk
2   Krankenhaushygiene, Universitätsklinikum Carl Gustav Carus, Dresden, Deutschland
› Author Affiliations

Zusammenfassung

Maßnahmen zur Eingrenzung von SARS-CoV-2 beinhalten häufig die regelmäßige Desinfektion öffentlicher Flächen. In dieser systematischen Übersichtsarbeit wird dargelegt, wie häufig sich SARS-CoV-2 im Umfeld bestätigter Fälle auf Flächen nachweisen lässt. In 26 Studien zeigt sich, dass die RNA von SARS-CoV-2 zu 0 bis 100% auf Flächen im Patientenumfeld gefunden werden kann. Die 7 Studien mit mindestens 100 Proben zeigen mehrheitlich Nachweisraten zwischen 1,4 und 19%. Aus 2 weiteren Studien geht hervor, dass der Nachweis von infektiösem SARS-CoV-2 bislang von keiner Fläche gelungen ist. Vergleichbare Erkenntnisse finden sich für Flächen im Umfeld bestätigter SARS- bzw. Influenzapatienten. Eine Kontamination öffentlicher Flächen mit infektiösem SARS-CoV-2 ist durch die wenigen Virenausscheider im öffentlichen Raum, die meist kurze Kontaktzeit dieser Personen zur Fläche und die fehlende Symptomatik asymptomatischer Fälle noch weitaus unwahrscheinlicher. Außerdem wird durch das Berühren von Flächen nur ein Teil der Viruslast auf die Hände übertragen. Ein reinigendes Wischverfahren kann die Zahl infektiöser Viren bereits um ca. 2 log10-Stufen reduzieren. Deshalb sollten Flächen im öffentlichen Raum grundsätzlich gereinigt werden, da durch die breite Anwendung biozider Wirkstoffe zur Flächendesinfektion der mikrobielle Selektionsdruck ohne zu erwartenden Gesundheitsnutzen weiter ansteigt.

Abstract

Measures to control SARS-CoV-2 often include the regular disinfection of public surfaces. The frequency of SARS-CoV-2 detection on surfaces in the surrounding of confirmed cases was evaluated in this systematic review. Overall, 26 studies showed 0 and 100% rates of contamination with SARS-CoV-2 RNA on surfaces in the surrounding of patients. Seven studies with at least 100 samples mostly showed detection rates between 1.4 and 19%. Two other studies did not detect infectious SARS-CoV-2 on any surface. Similar results were obtained from surfaces in the surrounding of confirmed SARS- and influenza-patients. A contamination of public surfaces with infectious virus is considerably less likely because there are much less potential viral spreaders around a surface, the contact time between a person and the surface is much shorter, and the asymptomatic carriers typically have no symptoms. In addition, a hand contact with a contaminated surface transfers only a small part of the viral load. A simple cleaning reduces the number of infectious viruses already by 2 log10-steps. That is why public surfaces should in general be cleaned because the wide use of biocidal agents for surface disinfection further increases the microbial selection pressure without an expectable health benefit.



Publication History

Article published online:
04 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 van Doremalen N, Bushmaker T, Morris DH. et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med 2020; 382: 1564-1567 DOI: 10.1056/NEJMc2004973.
  • 2 Kampf G, Todt D, Pfaender S. et al. Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. J Hosp Infect 2020; 104: 246-251
  • 3 Eccles R. Respiratory mucus and persistence of virus on surfaces. J Hosp Infect 2020; 105: 350 doi:10.1016/j.jhin.2020.03.026
  • 4 Anonym. Flensburger Phänomenta öffnet wieder (6. Juni 2020). Im Internet: https://www.ndr.de/fernsehen/sendungen/schleswig-holstein_magazin/Flensburger-Phaenomenta-oeffnet-wieder,shmag73276.html
  • 5 DEHOGA. Wiedereintritt unter den Bedingungen der Corona-Krise. Gastronomie (8. Mai 2020). Im Internet: https://www.dehoga-mv.de/aktuelles/coronavirus/oeffnung-des-gastronomie-ab-09-05-2020.html Stand: 14. Mai 2020
  • 6 Chia PY, Coleman KK, Tan YK. et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nature Communications 2020; 11: 2800 DOI: 10.1038/s41467-020-16670-2.
  • 7 Guo ZD, Wang ZY, Zhang SF. et al. Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerg Infect Dis 2020; 1583–1591 DOI: 10.3201/eid2607.200885 .
  • 8 Cheng VC, Wong SC, Chan VW. et al. Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infect Control Hosp Epidemiol 2020; 1258-1265 DOI: 10.1017/ice.2020.282.
  • 9 Cheng VCC, Wong SC, Chen JHK. et al. Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infect Control Hosp Epidemiol 2020; 41: 493-498 DOI: 10.1017/ice.2020.58.
  • 10 Ye G, Lin H, Chen S. et al. Environmental contamination of SARS-CoV-2 in healthcare premises. J Infect 2020; 81: e1-e5 DOI: 10.1016/j.jinf.2020.04.034.
  • 11 Liang En Ian W, Sim XYJ, Conceicao EP. et al. Containing COVID-19 outside the isolation ward: the impact of an infection control bundle on environmental contamination and transmission in a cohorted general ward. Am J Infect Control 2020; DOI: 10.1016/j.ajic.2020.06.188.
  • 12 Wu S, Wang Y, Jin X. et al. Environmental contamination by SARS-CoV-2 in a designated hospital for coronavirus disease 2019. Am J Infect Control 2020; 48: 910-914 DOI: 10.1016/j.ajic.2020.05.003.
  • 13 Lei H, Ye F, Liu X. et al. SARS-CoV-2 environmental contamination associated with persistently infected COVID-19 patients. Influenza and other Respiratory Viruses 2020; 14: 688-699 DOI: 10.1111/irv.12783.
  • 14 Su WL, Hung PP, Lin CP. et al. Masks and closed-loop ventilators prevent environmental contamination by COVID-19 patients in negative-pressure environments. Journal of Microbiology, Immunology, and Infection 2020; 26: 1583-1591 DOI: 10.1016/j.jmii.2020.05.002.
  • 15 Döhla M, Wilbring G, Schulte B. et al. SARS-CoV-2 in environmental samples of quarantined households. medRxiv 2020; DOI: 10.1101/2020.05.28.20114041.
  • 16 Wei L, Lin J, Duan X. et al. Asymptomatic COVID-19 Patients Can Contaminate Their Surroundings: an Environment Sampling Study. mSphere 2020; 5: e00442-20 DOI: 10.1128/mSphere.00442-20.
  • 17 Nelson A, Kassimatis J, Estoque J. et al. Environmental Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from Medical Equipment in Long-Term Care Facilities undergoing COVID-19 Outbreaks. Am J Infect Control 2021; DOI: 10.1016/j.ajic.2020.07.001.
  • 18 Wang H, Mo P, Li G. et al. Environmental virus surveillance in the isolation ward of COVID-19. J Hosp Infect 2020; DOI: 10.1016/j.jhin.2020.04.020.
  • 19 Ryu BH, Cho Y, Cho OH. et al. Environmental contamination of SARS-CoV-2 during the COVID-19 outbreak in South Korea. Am J Infect Control 2020; DOI: 10.1016/j.ajic.2020.05.027.
  • 20 Razzini K, Castrica M, Menchetti L. et al. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy.. The Science of the Total Environment 2020; 742: 140540 DOI: 10.1016/j.scitotenv.2020.140540.
  • 21 Wang J, Feng H, Zhang S. et al. SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the Coronavirus Disease 2019 outbreak in a Chinese hospital. Int J Infect Dis 2020; 94: 103-106 DOI: 10.1016/j.ijid.2020.04.024.
  • 22 Ong SWX, Tan YK, Chia PY. et al. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA 2020; 323: 1610-1612 DOI: 10.1001/jama.2020.3227.
  • 23 Jerry J, O'Regan E, O'Sullivan L. et al. Do established infection prevention and control measures prevent spread of SARS-CoV-2 to the hospital environment beyond the patient room?. J Hosp Infect 2020; DOI: 10.1016/j.jhin.2020.06.026..
  • 24 Colaneri M, Seminari E, Novati S. et al. Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit. Clin Microbiol Infect 2020; 26: e1091-e1094.e1095 DOI: 10.1016/j.cmi.2020.05.009.
  • 25 Hu X, Xing Y, Ni W. et al. Environmental contamination by SARS-CoV-2 of an imported case during incubation period. Sci Total Environ 2020; 742: 140620 DOI: 10.1016/j.scitotenv.2020.140620.
  • 26 Jiang FC, Jiang XL, Wang ZG. et al. Detection of Severe Acute Respiratory Syndrome Coronavirus 2 RNA on Surfaces in Quarantine Rooms. Emerg Infect Dis 2020; 2162-2164 DOI: 10.3201/eid2609.201435.
  • 27 Bloise I, Gómez-Arroyo B, García-Rodríguez J. Detection of SARS-CoV-2 on high-touch surfaces in a clinical microbiology laboratory. J Hosp Infect 2020; DOI: 10.1016/j.jhin.2020.05.017.
  • 28 Colaneri M, Seminari E, Piralla A. et al. Lack of SARS-CoV-2 RNA environmental contamination in a tertiary referral hospital for infectious diseases in Northern Italy. J Hosp Infect 2020; DOI: 10.1016/j.jhin.2020.03.018.
  • 29 Lee SE, Lee DY, Lee WG. et al. Detection of Novel Coronavirus on the Surface of Environmental Materials Contaminated by COVID-19 Patients in the Republic of Korea. Osong Public Health and Research Perspectives 2020; 11: 128-132 DOI: 10.24171/j.phrp.2020.11.3.03.
  • 30 Shin KS, Park HS, Lee J. et al. Environmental Surface Testing for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during Prolonged Isolation of an Asymptomatic Carrier. Infect Control Hosp Epidemiol 2020; 41: 1328-1330 DOI: 10.1017/ice.2020.300.
  • 31 Yung CF, Kam KQ, Wong MSY. et al. Environment and Personal Protective Equipment Tests for SARS-CoV-2 in the Isolation Room of an Infant With Infection. Ann Intern Med 2020; 173: 240-242 DOI: 10.7326/m20-0942.
  • 32 Hirotsu Y, Maejima M, Nakajima M. et al. Environmental cleaning is effective for the eradication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in contaminated hospital rooms: A patient from the Diamond Princess cruise ship. Infect Control Hosp Epidemiol 2020; DOI: 10.1017/ice.2020.144.
  • 33 Kratzel A, Steiner S, Todt D. et al. Temperature-dependent surface stability of SARS-CoV-2. The Journal of Infection 2020; 81: 452-482 DOI: 10.1016/j.jinf.2020.05.074..
  • 34 Booth TF, Kournikakis B, Bastien N. et al. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J Infect Dis 2005; 191: 1472-1477 DOI: 10.1086/429634.
  • 35 Dowell SF, Simmerman JM, Erdman DD. et al. Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin Infect Dis 2004; 39: 652-657 DOI: 10.1086/422652.
  • 36 Bin SY, Heo JY, Song MS. et al. Environmental Contamination and Viral Shedding in MERS Patients During MERS-CoV Outbreak in South Korea. Clin Infect Dis 2016; 62: 755-760 DOI: 10.1093/cid/civ1020.
  • 37 Simmerman JM, Suntarattiwong P, Levy J. et al. Influenza virus contamination of common household surfaces during the 2009 influenza A (H1N1) pandemic in Bangkok, Thailand: implications for contact transmission. Clin Infect Dis 2010; 51: 1053-1061 DOI: 10.1086/656581.
  • 38 Kampf G. Risiken und Übertragungswahrscheinlichkeiten. In: Kampf G. Nutzen und Risiken von Corona-Maßnahmen – Erkenntnisse aus der Wissenschaft. Norderstedt: BoD. 2020: 102-111
  • 39 Robert Koch-Institut. Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19). 06.05.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND Im Internet: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-05-06-de.pdf;jsessionid=9B5455FAB852C9F372AE628EF396CF3C.internet121?__blob=publicationFile Stand: 22. September 2020
  • 40 He X, Lau EHY, Wu P. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine 2020; 26: 672-675 DOI: 10.1038/s41591-020-0869-5.
  • 41 Robert Koch-Institut. Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19). 10.07.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. Im Internet: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-07-10-de.pdf?__blob=publicationFile Stand: 22. September 2020
  • 42 Fernstrom A, Goldblatt M. Aerobiology and its role in the transmission of infectious diseases. Journal of Pathogens 2013; 2013: 493960 DOI: 10.1155/2013/493960.
  • 43 Bourouiba L. Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. JAMA 2020; DOI: 10.1001/jama.2020.4756.
  • 44 Zhang H, Li D, Xie L. et al. Documentary Research of Human Respiratory Droplet Characteristics. Procedia Engineering 2015; 121: 1365-1374 DOI: 10.1016/j.proeng.2015.09.023.
  • 45 Leung NHL, Chu DKW, Shiu EYC. et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine 2020; 26: 676-680 DOI: 10.1038/s41591-020-0843-2.
  • 46 Ansari SA, Springthorpe VS, Sattar SA. et al. Potential role of hands in the spread of respiratory viral infections: studies with human parainfluenza virus 3 and rhinovirus 14. J Clin Microbiol 1991; 29: 2115-2119
  • 47 Bean B, Moore BM, Sterner B. et al. Survival of influenza viruses an environmental surfaces. J Infect Dis 1982; 146: 47-51
  • 48 KRINKO am Robert Koch Institut. Anforderungen an die Hygiene bei der Reinigung und Desinfektion von Flächen. Bundesgesundheitsblatt 2004; 47: 51-61
  • 49 Tun MH, Tun HM, Mahoney JJ. et al. Postnatal exposure to household disinfectants, infant gut microbiota and subsequent risk of overweight in children. Can Med Assoc J 2018; 190: E1097-e1107 DOI: 10.1503/cmaj.170809.
  • 50 Mahnert A, Moissl-Eichinger C, Zojer M. et al. Man-made microbial resistances in built environments. Nature Communications 2019; 10: 968 DOI: 10.1038/s41467-019-08864-0.
  • 51 Kampf G. Adaptive microbial response to low level benzalkonium chloride exposure. J Hosp Infect 2018; 100: e1-e22 doi:10.1016/j.jhin.2018.05.019
  • 52 Braoudaki M, Hilton AC. Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 2004; 42: 73-78
  • 53 Cutts TA, Robertson C, Theriault SS. et al. Assessing the Contributions of Inactivation, Removal, and Transfer of Ebola Virus and Vesicular Stomatitis Virus by Disinfectant Pre-soaked Wipes. Frontiers in Public Health 2020; 8: 183 DOI: 10.3389/fpubh.2020.00183.