Klinische Neurophysiologie 2021; 52(02): 92-104
DOI: 10.1055/a-1335-1086
Originalia

Stellenwert klinischer, funktioneller und bildgebender Diagnostik zur Früherkennung, Differenzialdiagnose und Verlaufskontrolle diabetischer Neuropathien

The Role of Clinical, Functional, and Imaging Diagnostics for Early Detection, Differential Diagnosis, and Monitoring of Diabetic Neuropathies
Maike F. Dohrn
1   Neurologie, Uniklinik der RWTH Aachen, Aachen, Deutschland
,
Natalie Winter
2   Neurologie, Universitätsklinikum Tübingen, Tübingen, Deutschland
,
Christina Dumke
1   Neurologie, Uniklinik der RWTH Aachen, Aachen, Deutschland
,
Friederike Bähr
1   Neurologie, Uniklinik der RWTH Aachen, Aachen, Deutschland
,
Annabelle Ouwenbroek
1   Neurologie, Uniklinik der RWTH Aachen, Aachen, Deutschland
,
Barbara Hoppe
3   Neurologie, Klinikum Köln-Merheim, Köln, Deutschland
,
Karlheinz Reiners
4   Neurologie, Hermann-Josef-Krankenhaus Erkelenz, Erkelenz, Deutschland
,
Manuel Dafotakis
1   Neurologie, Uniklinik der RWTH Aachen, Aachen, Deutschland
› Institutsangaben

Zusammenfassung

Von weltweit mehr als 400 Mio. Menschen mit Diabetes mellitus entwickeln bis zu 50% im Laufe ihrer Erkrankung eine Neuropathie. Trotz oder gerade wegen dieser Häufigkeit darf jedoch nicht jede Neuropathie, die in Koinzidenz mit einem Diabetes mellitus auftritt, unkritisch als diabetische Neuropathie diagnostiziert werden. Eine präzise Ausschluss- und Ausmaßdiagnostik ist entscheidend, um andere behandelbare Erkrankungen wie z. B. die Chronisch Inflammatorische Demyelinisierende Polyradikuloneuropathie oder die hereditäre Transthyretin-Amyloidose nicht zu übersehen. Einfache, nicht-invasive, preiswerte und allzeit verfügbare Screeningmethoden stellen Anamnese und klinische Untersuchung dar. Ergänzend ist in frühen Erkrankungsstadien die Quantitativ Sensorische Testung hilfreich zur Eingrenzung einer Small Fiber-Dysfunktion. Sind, typischerweise im Verlauf, große Nervenfasern geschädigt, so ist das charakteristische elektrophysiologische Bild das einer längenabhängigen, axonalen, sensibel betonten oder sensomotorischen Neuropathie. Die Nervensonografie kann zur Unterscheidung von autoimmun-demyelinisierenden Neuropathien hilfreich sein. Moderne Untersuchungsverfahren wie die MR-Neurografie können auch proximale Nervenabschnitte bis auf Faszikelebene darstellen, sind allerdings nur an wenigen Zentren verfügbar. Haut- und Nervenbiopsien sind v. a. bei untypischen Verläufen zur Abgrenzung von Differenzialdiagnosen hilfreich. Diabetische Neuropathien können zu einer erheblichen Reduktion von Lebensqualität und Lebensdauer führen. Zur frühest- und bestmöglichen ursächlichen und symptomatischen Therapieeinleitung ist eine präzise Diagnostik essentiell.

Abstract

Out of 400 million individuals with diabetes mellitus worldwide, up to 50% will develop some form of neuropathy during the course of the disease. However, not every neuropathy occurring along with diabetes mellitus can be considered as diabetic neuropathy. Precise diagnostic methods are required not to miss other treatable diseases, e. g., chronic inflammatory demyelinating polyradiculoneuropathy or hereditary transthyretin-related amyloidosis. Patient history and neurological examinations constitute easy, non-invasive, cost-efficient, and readily available screening tools. In early stages, quantitative sensory testing is helpful in evaluating small fiber dysfunction. When large fibers are damaged, nerve conduction studies show a length-dependent, axonal, sensory or sensorimotor neuropathy. The nerve ultrasound can be helpful to distinguish diabetic from autoimmune neuropathy. MRI neurography has the potential to depict even proximal nerve sections up to fascicle levels, but is available at highly specialized centers only. Skin and nerve biopsies are still of use to identify competing causes in atypical cases. Diabetic neuropathies can drastically reduce the span and quality of life. Precise diagnostic procedures are essential for identifying the best and earliest causative and symptomatic treatment.



Publikationsverlauf

Artikel online veröffentlicht:
25. Januar 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Harris M, Eastman R, Cowie C. Symptoms of sensory neuropathy in adults with NIDDM in the US population. Diabetes Care 1993; 16: 1446
  • 2 Obrosova I. Update on the pathogenesis of diabetic neuropathy. Curr Diab Rep 2003; 3: 439
  • 3 Pasnoor M, Dimachkie M, Kluding P. et al. Diabetic neuropathy part 1: overview and symmetric phenotypes. Neurol Clin 2013; 31: 425
  • 4 Dyck P. nerve: Detection, characterization, and staging of polyneuropathy: assessed in diabetics. Muscle Nerve 1988; 11: 21
  • 5 Dohrn M, Othman A, Hirshman S. et al Elevation of plasma 1-deoxy-sphingolipids in type 2 diabetes mellitus: a susceptibility to neuropathy?. Eur J Neurol 2015; 22: 806
  • 6 Singleton J, Smith A, Bromberg M. Painful sensory polyneuropathy associated with impaired glucose tolerance. Muscle Nerve 2001; 24: 1225
  • 7 Ziegler D, Landgraf R, Lobmann R. et al. Painful and painless neuropathies are distinct and largely undiagnosed entities in subjects participating in an educational initiative (PROTECT study). Diabetes Res Clin Pract 2018; 139: 147-154
  • 8 Ziegler D, Landgraf R, Lobmann R. et al. Polyneuropathy is inadequately treated despite increasing symptom intensity in individuals with and without diabetes (PROTECT follow-up study). J Diabetes Investig. 2020
  • 9 Sämann A, Tajiyeva O, Müller N. et al. Prevalence of the diabetic foot syndrome at the primary care level in Germany: a cross-sectional study. Diabet Med 2008; 25: 557
  • 10 AWMF: Neuropathie bei Diabetes im Erwachsenenalter Diabetologie. 2012 DOI: 10.6101/AZQ/000315
  • 11 Ziegler D, Keller J, Maier C. et al. Diabetic neuropathy. Exp Clin Endocrinol Diabetes 2014; 122: 406
  • 12 Pop-Busui R, Boulton AJ, Feldman EL. et al. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017; 40: 136
  • 13 Laughlin RS, Dyck PJ, Melton LJ. et al. Incidence and prevalence of CIDP and the association of diabetes mellitus. Neurology 2009; 73: 39
  • 14 Dohrn M, Röcken C, De Bleecker J. et al. Diagnostic hallmarks and pitfalls in late-onset progressive transthyretin-related amyloid-neuropathy. J Neurol 2013; 260: 3093
  • 15 Dyck P, Albers J, Andersen H. et al. Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes Metab Res Rev 2011; 27: 620
  • 16 Albers JW, Pop-Busui R. Diabetic Neuropathy: Mechanisms, Emerging Treatments, and Subtypes. Curr Neurol Neurosci Rep 2014; 14: 473
  • 17 Dyck PJ, Kratz K, Karnes J. et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 1993; 43: 817-817
  • 18 O'Connor AB, Dworkin RH. Treatment of neuropathic pain: an overview of recent guidelines. Am J Med 2009; 122: 22-32
  • 19 Sommer C, Geber C, Young P. et al. Polyneuropathies. Dtsch Arztebl Int 2018; 115: 83
  • 20 Albers JW, Jacobson RD, Smyth DL. Diabetic Amyotrophy: From the Basics to the Bedside. EMJ 2020; 5: 94-103
  • 21 Tesfaye S, Chaturvedi N, Eaton S. et al. Group EPCS Vascular risk factors and diabetic neuropathy. N Engl J Med 2005; 352: 341
  • 22 Sandireddy R, Yerra VG, Areti A. et al. Neuroinflammation and Oxidative Stress in Diabetic Neuropathy: Futuristic Strategies Based on These Targets. Int J Endocrinol. 2014
  • 23 Callaghan BC, Cheng H, Stables CL. et al. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol 2012; 11: 521
  • 24 Gibbons CH, Freeman R. Treatment-induced neuropathy of diabetes: an acute, iatrogenic complication of diabetes. Brain 2015; 138: 43
  • 25 Dohrn MF, Kessler S, Dafotakis M. Die Rolle der diabetischen Neuropathie bei der Genese des Charcot-Fußes. Klin Neurophysiol 2020; 51: 67-72
  • 26 Burke D, Skuse NF, Lethlean AK. Sensory conduction of the sural nerve in polyneuropathy. J Neurol Neurosurg Psychiatry 1974; 37: 647
  • 27 Sima AA, Kamiya H. Diabetic neuropathy differs in type 1 and type 2 diabetes. Ann N Y Acad Sci 2006; 1084: 235-249
  • 28 Krishnan A, Kiernan M. Altered nerve excitability properties in established diabetic neuropathy. Brain 2005; 128: 1178
  • 29 Wilson J, Stittsworth J, Kadir A. et al. Conduction velocity vs. amplitude analysis: evidence for demyelination in diabetic neuropathy. Muscle Nerve 1998; 21: 1228
  • 30 Gorson K, Ropper A, Adelman L. et al. Influence of diabetes mellitus on chronic inflammatory demyelinating polyneuropathy. Muscle Nerve 2000; 23: 37
  • 31 Bril V, Blanchette CM, Noone JM. et al. The dilemma of diabetes in chronic inflammatory demyelinating polyneuropathy. J Diabetes Complications 2016; 30: 1401
  • 32 Ziegler D, Mühlen H, Gries F. Neurophysiological tests in type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetic patients with subclinical and symptomatic neuropathy. Diabetologia 1992; 35: 1099
  • 33 Løseth S, Mellgren S, Jorde R. et al. Polyneuropathy in type 1 and type 2 diabetes: comparison of nerve conduction studies, thermal perception thresholds and intraepidermal nerve fibre densities. Diabetes Metab Res Rev 2010; 26: 100
  • 34 Baum P, Hermann W, Verlohren H. et al. Diabetic neuropathy in patients with “latent autoimmune diabetes of the adults” (LADA) compared with patients with type 1 and type 2 diabetes. J Neurol 2003; 250: 682
  • 35 Mücke M, Cuhls H, Radbruch L. et al. Quantitative sensory testing (QST). English version. Schmerz. 2016
  • 36 Rolke R, Magerl W, Campbell KA. et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Pain 2006; 10: 77-88
  • 37 Ewing D, Boland O, Neilson J. et al. Autonomic neuropathy, QT interval lengthening, and unexpected deaths in male diabetic patients. Diabetologia 1991; 34: 182
  • 38 Ziegler D, Zentai C, Perz S. et al. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg Cohort Study. Diabetes Care 2008; 31: 556
  • 39 Sletten DM, Weigand SD, Low PA. Relationship of Q-Sweat to Quantitative Sudomotor Axon Reflex Test (QSART) Volumes. Muscle Nerve 2010; 41: 240
  • 40 Pitarokoili K, Kerasnoudis A, Behrendt V. et al. Facing the diagnostic challenge: Nerve ultrasound in diabetic patients with neuropathic symptoms. Muscle Nerve 2016; 54: 18-24
  • 41 Watanabe T, Ito H, Sekine A. et al. Sonographic evaluation of the peripheral nerve in diabetic patients: the relationship between nerve conduction studies, echo intensity, and cross-sectional area. J Ultrasound Med 2010; 29: 697
  • 42 Hobson-Webb L, Massey J, Juel V. Nerve ultrasound in diabetic polyneuropathy: correlation with clinical characteristics and electrodiagnostic testing. Muscle Nerve 2013; 47: 379
  • 43 Lee D, Dauphinée D. Morphological and functional changes in the diabetic peripheral nerve: using diagnostic ultrasound and neurosensory testing to select candidates for nerve decompression. J Am Podiatr Med Assoc 2005; 95: 433
  • 44 Tan C, Arumugam T, Razali S. et al. Nerve ultrasound can distinguish chronic inflammatory demyelinating polyneuropathy from demyelinating diabetic sensorimotor polyneuropathy. J Clin Neurosci 2018; 57: 198
  • 45 Vaeggemose M, Haakma W, Pham M. et al. Diffusion tensor imaging MR Neurography detects polyneuropathy in type 2 diabetes. J Diabetes Complications 2020; 34: 107439
  • 46 Vaeggemose M, Pham M, Ringgaard S. et al. Diffusion tensor imaging MR neurography for the detection of polyneuropathy in type 1 diabetes. J Magn Reson Imaging 2017; 45: 1125
  • 47 Pham M, Oikonomou D, Bäumer P. et al. Proximal Neuropathic Lesions in Distal Symmetric Diabetic Polyneuropathy: Findings of high-resolution magnetic resonance neurography. Diabetes Care 2011; 34: 721
  • 48 Thakkar R, Del Grande F, Thawait G. et al. Spectrum of high-resolution MRI findings in diabetic neuropathy. AJR Am J Roentgenol 2012; 199: 407
  • 49 Sima A. Zhang WJHocn: Mechanisms of diabetic neuropathy: axon dysfunction. Handb Clin Neurol 2014; 126: 429
  • 50 Malik R, Tesfaye S, Newrick P. et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia 2005; 48: 578
  • 51 Weis J, Schröder JM, Dimpfel W. Nerve conduction changes and fine structural alterations of extra-and intrafusal muscle and nerve fibers in streptozotocin diabetic rats. Muscle Nerve 1995; 18: 175-184
  • 52 Flachenecker P, Janka M, Goldbrunner R. et al. Clinical outcome of sural nerve biopsy: a retrospective study. J Neurol 1999; 246: 93
  • 53 Sommer C. Nerve and skin biopsy in neuropathies. Curr Opin Neurol 2018; 31: 534
  • 54 Pasnoor M, Dimachkie M, Barohn R. Diabetic neuropathy part 2: proximal and asymmetric phenotypes. Neurol Clin 2013; 31: 447
  • 55 Jiang M-S, Yuan Y, Gu Z-X. et al. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta-analysis. Br J Ophthalmol 2016; 100: 9-14
  • 56 Perkins BA, Lovblom LE, Bril V. et al. Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia 2018; 61: 1856-1861
  • 57 Tavakoli M, Quattrini C, Abbott C. et al. Corneal Confocal Microscopy: A novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care 2010; 33: 1792
  • 58 Penno A, Reilly MM, Houlden H. et al. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J Biol Chem 2010; 285: 11178-11187
  • 59 Wile DJ, Toth C. Association of metformin, elevated homocysteine, and methylmalonic acid levels and clinically worsened diabetic peripheral neuropathy. Diabetes Care 2010; 33: 156-161
  • 60 Haq RU, Pendlebury WW, Fries TJ. et al. Chronic inflammatory demyelinating polyradiculoneuropathy in diabetic patients. Muscle Nerve 2003; 27: 465-470
  • 61 Lozeron P, Nahum L, Lacroix C. et al. Symptomatic diabetic and non-diabetic neuropathies in a series of 100 diabetic patients. J Neurol 2002; 249: 569
  • 62 Isose S, Kuwabara S, Kokubun N. et al. Utility of the distal compound muscle action potential duration for diagnosis of demyelinating neuropathies. J Peripher Nerv Syst 2009; 14: 151
  • 63 Cleland J, Malik K, Thaisetthawatkul P. et al. Acute inflammatory demyelinating polyneuropathy: contribution of a dispersed distal compound muscle action potential to electrodiagnosis. Muscle Nerve 2006; 33: 771
  • 64 Perkins BA, Olaleye D, Bril V. Carpal tunnel syndrome in patients with diabetic polyneuropathy. Diabetes Care 2002; 25: 565-569
  • 65 Dellon A. Treatment of symptoms of diabetic neuropathy by peripheral nerve decompression. Plast Reconstr Surg 1992; 89: 689-697
  • 66 Chaudhry V, Russell J, Belzberg A. Decompressive surgery of lower limbs for symmetrical diabetic peripheral neuropathy. Cochrane Database Syst Rev. 2008