Hamostaseologie 2021; 41(04): 283-293
DOI: 10.1055/a-1332-3066
Review Article

Thrombotic Thrombocytopenic Purpura: When Basic Science Meets Clinical Research

Gaëlle Bécel*
1   Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France
2   Service d'hématologie, Hôpital Saint-Antoine, AP-HP – Sorbonne Université, Paris, France
,
Sylvia Faict*
1   Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France
2   Service d'hématologie, Hôpital Saint-Antoine, AP-HP – Sorbonne Université, Paris, France
,
Adrien Picod
1   Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France
2   Service d'hématologie, Hôpital Saint-Antoine, AP-HP – Sorbonne Université, Paris, France
,
Raïda Bouzid
1   Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France
,
Agnès Veyradier
1   Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France
3   Service d'Hématologie Biologique, Groupe Hospitalier Saint-Louis-Lariboisière, AP-HP, Paris, France
4   Université Paris-Diderot, Paris, France
,
Paul Coppo
1   Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France
2   Service d'hématologie, Hôpital Saint-Antoine, AP-HP – Sorbonne Université, Paris, France
5   Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Paris, France
› Institutsangaben

Abstract

The therapeutic landscape of thrombotic thrombocytopenic purpura (TTP) is rapidly changing with the recent availability of new targeted therapies. This progressive shift from empiricism to pathophysiology-based treatments reflects an intensive interaction between the continuous findings in the field of basic science and an efficient collaborative clinical research and represents a convincing example of the strength of translational medicine. Despite the rarity of TTP, national and international efforts could circumvent this limitation and shed light on the epidemiology, clinical presentation, prognosis, and long-term outcome of this disease. Importantly, they also provided high-quality results and practice changing studies for the benefit of patients. We report here the most recent therapeutic findings that allowed progressively improving the prognostic of TTP, both at the acute phase and through long-term outcome.

* Both the authors equally contributed to this work.




Publikationsverlauf

Eingereicht: 18. Juni 2020

Angenommen: 07. Dezember 2020

Artikel online veröffentlicht:
19. Februar 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Mariotte E, Azoulay E, Galicier L. et al; French Reference Center for Thrombotic Microangiopathies. Epidemiology and pathophysiology of adulthood-onset thrombotic microangiopathy with severe ADAMTS13 deficiency (thrombotic thrombocytopenic purpura): a cross-sectional analysis of the French national registry for thrombotic microangiopathy. Lancet Haematol 2016; 3 (05) e237-e245
  • 2 Deford CC, Reese JA, Schwartz LH. et al. Multiple major morbidities and increased mortality during long-term follow-up after recovery from thrombotic thrombocytopenic purpura. Blood 2013; 122 (12) 2023-2029 , quiz 2142
  • 3 Roriz M, Landais M, Desprez J. et al; French Thrombotic Microangiopathies Reference Center. Risk factors for autoimmune diseases development after thrombotic thrombocytopenic purpura. Medicine (Baltimore) 2015; 94 (42) e1598
  • 4 Prevel R, Roubaud-Baudron C, Gourlain S. et al. Immune thrombotic thrombocytopenic purpura in older patients: prognosis and long-term survival. Blood 2019; 134 (24) 2209-2217
  • 5 Kremer Hovinga JA, Coppo P, Lämmle B, Moake JL, Miyata T, Vanhoorelbeke K. Thrombotic thrombocytopenic purpura. Nat Rev Dis Primers 2017; 3: 17020
  • 6 Joly BS, Coppo P, Veyradier A. Thrombotic thrombocytopenic purpura. Blood 2017; 129 (21) 2836-2846
  • 7 Kremer Hovinga JA, Vesely SK, Terrell DR, Lämmle B, George JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood 2010; 115 (08) 1500-1511 , quiz 1662
  • 8 Peyvandi F, Lavoretano S, Palla R. et al. ADAMTS13 and anti-ADAMTS13 antibodies as markers for recurrence of acquired thrombotic thrombocytopenic purpura during remission. Haematologica 2008; 93 (02) 232-239
  • 9 Moschcowitz E. An acute febrile pleiochromic anemia with hyaline thrombosis of the terminal arterioles and capillaries: an undescribed disease. 1925. Mt Sinai J Med 2003; 70 (05) 352-355
  • 10 Moake JL, Rudy CK, Troll JH. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 1982; 307 (23) 1432-1435
  • 11 Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998; 339 (22) 1585-1594
  • 12 Furlan M, Robles R, Solenthaler M, Lämmle B. Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura. Blood 1998; 91 (08) 2839-2846
  • 13 Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 2001; 276 (44) 41059-41063
  • 14 Levy GG, Nichols WC, Lian EC. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413 (6855): 488-494
  • 15 Ferrari S, Scheiflinger F, Rieger M. et al; French Clinical and Biological Network on Adult Thrombotic Microangiopathies. Prognostic value of anti-ADAMTS 13 antibody features (Ig isotype, titer, and inhibitory effect) in a cohort of 35 adult French patients undergoing a first episode of thrombotic microangiopathy with undetectable ADAMTS 13 activity. Blood 2007; 109 (07) 2815-2822
  • 16 Roose E, Schelpe AS, Joly BS. et al. An open conformation of ADAMTS-13 is a hallmark of acute acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2018; 16 (02) 378-388
  • 17 Jestin M, Benhamou Y, Schelpe AS. et al; French Thrombotic Microangiopathies Reference Center. Preemptive rituximab prevents long-term relapses in immune-mediated thrombotic thrombocytopenic purpura. Blood 2018; 132 (20) 2143-2153
  • 18 Roose E, Schelpe AS, Tellier E. et al. Open ADAMTS13, induced by antibodies, is a biomarker for subclinical immune-mediated thrombotic thrombocytopenic purpura. Blood 2020; 136 (03) 353-361
  • 19 Scully M, Brown J, Patel R, McDonald V, Brown CJ, Machin S. Human leukocyte antigen association in idiopathic thrombotic thrombocytopenic purpura: evidence for an immunogenetic link. J Thromb Haemost 2010; 8 (02) 257-262
  • 20 Coppo P, Busson M, Veyradier A. et al; French Reference Centre For Thrombotic Microangiopathies. HLA-DRB1*11: a strong risk factor for acquired severe ADAMTS13 deficiency-related idiopathic thrombotic thrombocytopenic purpura in Caucasians. J Thromb Haemost 2010; 8 (04) 856-859
  • 21 John ML, Hitzler W, Scharrer I. The role of human leukocyte antigens as predisposing and/or protective factors in patients with idiopathic thrombotic thrombocytopenic purpura. Ann Hematol 2012; 91 (04) 507-510
  • 22 Joly BS, Loiseau P, Darmon M. et al. HLA-DRB1*11 is a strong risk factor for acquired thrombotic thrombocytopenic purpura in children. Haematologica 2020:haematol.2019.241968
  • 23 Sakai K, Kuwana M, Tanaka H. et al. HLA loci predisposing to immune TTP in Japanese: potential role of the shared ADAMTS13 peptide bound to different HLA-DR. Blood 2020; 135 (26) 2413-2419
  • 24 Zheng L, Abdelgawwad MS, Zhang D. et al. Histone-induced thrombotic thrombocytopenic purpura in adamts13 −/− zebrafish depends on von Willebrand factor. Haematologica 2020; 105 (04) 1107-1119
  • 25 Benhamou Y, Boelle PY, Baudin B. et al; Reference Center for Thrombotic Microangiopathies, Experience of the French Thrombotic Microangiopathies Reference Center. Cardiac troponin-I on diagnosis predicts early death and refractoriness in acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2015; 13 (02) 293-302
  • 26 Grall M, Azoulay E, Galicier L. et al. Thrombotic thrombocytopenic purpura misdiagnosed as autoimmune cytopenia: causes of diagnostic errors and consequence on outcome. Experience of the French thrombotic microangiopathies reference centre. Am J Hematol 2017; 92 (04) 381-387
  • 27 Scully M, Cataland S, Coppo P. et al; International Working Group for Thrombotic Thrombocytopenic Purpura. Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J Thromb Haemost 2017; 15 (02) 312-322
  • 28 Joly B, Stepanian A, Hajage D. et al. Evaluation of a chromogenic commercial assay using VWF-73 peptide for ADAMTS13 activity measurement. Thromb Res 2014; 134 (05) 1074-1080
  • 29 Bendapudi PK, Hurwitz S, Fry A. et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol 2017; 4 (04) e157-e164
  • 30 Coppo P, Schwarzinger M, Buffet M. et al; French Reference Center for Thrombotic Microangiopathies. Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies: the French TMA reference center experience. PLoS One 2010; 5 (04) e10208
  • 31 Bell WR, Braine HG, Ness PM, Kickler TS. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med 1991; 325 (06) 398-403
  • 32 Rock GA, Shumak KH, Buskard NA. et al; Canadian Apheresis Study Group. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. N Engl J Med 1991; 325 (06) 393-397
  • 33 Rubinstein MA, Kagan BM, MacGillviray MH, Merliss R, Sacks H. Unusual remission in a case of thrombotic thrombocytopenic purpura syndrome following fresh blood exchange transfusions. Ann Intern Med 1959; 51: 1409-1419
  • 34 Bukowski RM, King JW, Hewlett JS. Plasmapheresis in the treatment of thrombotic thrombocytopenic purpura. Blood 1977; 50 (03) 413-417
  • 35 Byrnes JJ, Khurana M. Treatment of thrombotic thrombocytopenic purpura with plasma. N Engl J Med 1977; 297 (25) 1386-1389
  • 36 Gottschall JL, Pisciotta AV, Darin J, Hussey CV, Aster RH. Thrombotic thrombocytopenic purpura: experience with whole blood exchange transfusion. Semin Thromb Hemost 1981; 7 (01) 25-32
  • 37 Pereira A, Mazzara R, Monteagudo J. et al. Thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: a multivariate analysis of factors predicting the response to plasma exchange. Ann Hematol 1995; 70 (06) 319-323
  • 38 Sawler D, Parker A, Britto J, Goodyear MD, Sun HL. Time from suspected thrombotic thrombocytopenic purpura to initiation of plasma exchange and impact on survival: a 10-year provincial retrospective cohort study. Thromb Res 2020; 193: 53-59
  • 39 Hacquard M, Lecompte T, Belcour B. et al. Evaluation of the hemostatic potential including thrombin generation of three different therapeutic pathogen-reduced plasmas. Vox Sang 2012; 102 (04) 354-361
  • 40 de la Rubia J, Arriaga F, Linares D. et al. Role of methylene blue-treated or fresh-frozen plasma in the response to plasma exchange in patients with thrombotic thrombocytopenic purpura. Br J Haematol 2001; 114 (03) 721-723
  • 41 Alvarez-Larrán A, Del Río J, Ramírez C. et al. Methylene blue-photoinactivated plasma vs. fresh-frozen plasma as replacement fluid for plasma exchange in thrombotic thrombocytopenic purpura. Vox Sang 2004; 86 (04) 246-251
  • 42 del Río-Garma J, Alvarez-Larrán A, Martínez C. et al. Methylene blue-photoinactivated plasma versus quarantine fresh frozen plasma in thrombotic thrombocytopenic purpura: a multicentric, prospective cohort study. Br J Haematol 2008; 143 (01) 39-45
  • 43 Nguyen L, Li X, Duvall D, Terrell DR, Vesely SK, George JN. Twice-daily plasma exchange for patients with refractory thrombotic thrombocytopenic purpura: the experience of the Oklahoma Registry, 1989 through 2006. Transfusion 2008; 48 (02) 349-357
  • 44 Soucemarianadin M, Benhamou Y, Delmas Y. et al. Twice-daily therapeutical plasma exchange-based salvage therapy in severe autoimmune thrombotic thrombocytopenic purpura: the French TMA Reference Center experience. Eur J Haematol 2016; 97 (02) 183-191
  • 45 Picod A, Provôt F, Coppo P. Therapeutic plasma exchange in thrombotic thrombocytopenic purpura. Presse Med 2019; 48 (11, Pt 2): 319-327
  • 46 Coppo P, Cuker A, George JN. Thrombotic thrombocytopenic purpura: toward targeted therapy and precision medicine. Res Pract Thromb Haemost 2018; 3 (01) 26-37
  • 47 Nguyen L, Terrell DR, Duvall D, Vesely SK, George JN. Complications of plasma exchange in patients treated for thrombotic thrombocytopenic purpura. IV. An additional study of 43 consecutive patients, 2005 to 2008. Transfusion 2009; 49 (02) 392-394
  • 48 Balduini CL, Gugliotta L, Luppi M. et al; Italian TTP Study Group. High versus standard dose methylprednisolone in the acute phase of idiopathic thrombotic thrombocytopenic purpura: a randomized study. Ann Hematol 2010; 89 (06) 591-596
  • 49 Froissart A, Buffet M, Veyradier A. et al; French Thrombotic Microangiopathies Reference Center, Experience of the French Thrombotic Microangiopathies Reference Center. Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Crit Care Med 2012; 40 (01) 104-111
  • 50 Scully M, Cohen H, Cavenagh J. et al. Remission in acute refractory and relapsing thrombotic thrombocytopenic purpura following rituximab is associated with a reduction in IgG antibodies to ADAMTS-13. Br J Haematol 2007; 136 (03) 451-461
  • 51 George JN, Woodson RD, Kiss JE, Kojouri K, Vesely SK. Rituximab therapy for thrombotic thrombocytopenic purpura: a proposed study of the Transfusion Medicine/Hemostasis Clinical Trials Network with a systematic review of rituximab therapy for immune-mediated disorders. J Clin Apher 2006; 21 (01) 49-56
  • 52 Scully M, McDonald V, Cavenagh J. et al. A phase 2 study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura. Blood 2011; 118 (07) 1746-1753
  • 53 Westwood JP, Webster H, McGuckin S, McDonald V, Machin SJ, Scully M. Rituximab for thrombotic thrombocytopenic purpura: benefit of early administration during acute episodes and use of prophylaxis to prevent relapse. J Thromb Haemost 2013; 11 (03) 481-490
  • 54 Sadler JE. Pathophysiology of thrombotic thrombocytopenic purpura. Blood 2017; 130 (10) 1181-1188
  • 55 Benhamou Y, Paintaud G, Azoulay E. et al; French Reference Center for Thrombotic Microangiopathies. Efficacy of a rituximab regimen based on B cell depletion in thrombotic thrombocytopenic purpura with suboptimal response to standard treatment: Results of a phase II, multicenter noncomparative study. Am J Hematol 2016; 91 (12) 1246-1251
  • 56 Zwicker JI, Muia J, Dolatshahi L. et al; ART Investigators. Adjuvant low-dose rituximab and plasma exchange for acquired TTP. Blood 2019; 134 (13) 1106-1109
  • 57 Hie M, Gay J, Galicier L. et al. Preemptive rituximab infusions after remission efficiently prevent relapses in acquired thrombotic thrombocytopenic purpura: experience of the French Thrombotic Microangiopathies Reference Center. Blood 2014; 124 (02) 204-210
  • 58 Westwood JP, Thomas M, Alwan F. et al. Rituximab prophylaxis to prevent thrombotic thrombocytopenic purpura relapse: outcome and evaluation of dosing regimens. Blood Adv 2017; 1 (15) 1159-1166
  • 59 Saleem R, Rogers ZR, Neunert C, George JN. Maintenance rituximab for relapsing thrombotic thrombocytopenic purpura: a case report. Transfusion 2019; 59 (03) 921-926
  • 60 Ojeda-Uribe M, Federici L, Wolf M, Coppo P, Veyradier A. Successful long-term rituximab maintenance for a relapsing patient with idiopathic thrombotic thrombocytopenic purpura. Transfusion 2010; 50 (03) 733-735
  • 61 Delrue M, Baylatry MT, Joly AC. et al. Efficacy of subcutaneous preemptive rituximab in immune-mediated thrombotic thrombocytopenic purpura: experience from the first 12 cases. Am J Hematol 2020
  • 62 Poullin P, Bornet C, Veyradier A, Coppo P. Caplacizumab to treat immune-mediated thrombotic thrombocytopenic purpura. Drugs Today (Barc) 2019; 55 (06) 367-376
  • 63 Callewaert F, Roodt J, Ulrichts H. et al. Evaluation of efficacy and safety of the anti-VWF nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood 2012; 120 (17) 3603-3610
  • 64 Peyvandi F, Scully M, Kremer Hovinga JA. et al; TITAN Investigators. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2016; 374 (06) 511-522
  • 65 Scully M, Cataland SR, Peyvandi F. et al; HERCULES Investigators. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2019; 380 (04) 335-346
  • 66 Knoebl P, Cataland S, Peyvandi F. et al. Efficacy and safety of open-label caplacizumab in patients with exacerbations of acquired thrombotic thrombocytopenic purpura in the HERCULES study. J Thromb Haemost 2020; 18 (02) 479-484
  • 67 Coppo P, Bubenheim M, Azoulay E. et al. A regimen with caplacizumab, immunosuppression and plasma exchange prevents unfavorable outcomes in immune-mediated TTP. Blood 2020; blood.2020008021
  • 68 Völker LA, Kaufeld J, Miesbach W. et al. Real-world data confirm the effectiveness of caplacizumab in acquired thrombotic thrombocytopenic purpura. Blood Adv 2020; 4 (13) 3085-3092
  • 69 Chander DP, Loch MM, Cataland SR, George JN. Caplacizumab therapy without plasma exchange for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2019; 381 (01) 92-94
  • 70 Sukumar S, George JN, Cataland SR. Shared decision making, thrombotic thrombocytopenic purpura, and caplacizumab. Am J Hematol 2020
  • 71 Völker LA, Brinkkoetter PT, Knöbl PN. et al. Treatment of acquired thrombotic thrombocytopenic purpura without plasma exchange in selected patients under caplacizumab. J Thromb Haemost 2020; 18 (11) 3061-3066
  • 72 Scully M, Knöbl P, Kentouche K. et al. Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood 2017; 130 (19) 2055-2063
  • 73 Furlan M, Robles R, Morselli B, Sandoz P, Lämmle B. Recovery and half-life of von Willebrand factor-cleaving protease after plasma therapy in patients with thrombotic thrombocytopenic purpura. Thromb Haemost 1999; 81 (01) 8-13
  • 74 Plaimauer B, Kremer Hovinga JA, Juno C. et al. Recombinant ADAMTS13 normalizes von Willebrand factor-cleaving activity in plasma of acquired TTP patients by overriding inhibitory antibodies. J Thromb Haemost 2011; 9 (05) 936-944