Aktuelle Rheumatologie 2021; 46(03): 267-280
DOI: 10.1055/a-1322-9936
Übersichtsarbeit

Wechselwirkungen zwischen neuroendokrinem System und Immunsystem bei chronisch-entzündlichen Systemerkrankungen

Crosstalk between the Neuroendocrine and Immune Systems in Chronic Inflammatory Systemic Diseases
Florian Günther
1   Klinik und Poliklinik für Rheumatologie/Klinische Immunologie, Asklepios Klinikum, Bad Abbach, Deutschland
,
Martin Fleck
1   Klinik und Poliklinik für Rheumatologie/Klinische Immunologie, Asklepios Klinikum, Bad Abbach, Deutschland
,
Rainer Straub
2   Internal Medicine, University Hospital Regensburg, Regensburg, Deutschland
› Author Affiliations

Zusammenfassung

Hormonelle und neuronale Signalwege können die Manifestation einer chronisch-entzündlichen Systemerkrankung entweder begünstigen oder verhindern. Bei bereits manifester Erkrankung modulieren Hormone und Neurotransmitter den Krankheitsverlauf, in dem sie die Krankheitsaktivität erhöhen oder abschwächen. Beispiele hierfür sind der entzündungshemmende Einfluss der körpereigenen und exogenen Glukokortikoide und die entzündungsfördernden Effekte von Stress bei chronisch-entzündlichen Systemerkrankungen. Bei chronisch-entzündlichen Systemerkrankungen ringt das aktivierte Immunsystem mit dem Gehirn und anderen Organsystemen um Energie, was zu vielfältigen Erkrankungsfolgen und Folgeerkrankungen führt: „sickness behaviour“ mit Fatigue-Symptomatik und depressiven Symptomen, Schlafstörungen, Anorexie, Fehl- und Mangelernährung, Knochenabbau, Muskelabbau und kachektische Fettsucht, Insulinresistenz mit Hyperinsulinämie (begleitet von einer Resistenz gegenüber dem Insulin-like growth factor 1), Dyslipidämie, Veränderungen der Steroidhormonachsen, Störungen der Hypothalamus-Hypophysen-Gonaden-Achse, erhöhter Sympathikotonus, herabgesetzte Aktivität des parasympathischen Nervensystems, arterielle Hypertonie und Volumenbelastung, Entzündungsanämie und zirkadiane Rhythmik der Symptomausprägung. Diese für die Patienten gravierenden Folgeerkrankungen, welche den chronisch-entzündlichen Systemerkrankungen inhärent sind, sollten konsequent therapiert werden.

Abstract

Hormonal and neuronal pathways either support or inhibit the manifestation of chronic inflammatory systemic diseases before the onset of the disease. After the onset of the disease, hormones and neurotransmitters may stimulate or inhibit the disease. Hormones and neurotransmitters modulate the course of the disease after disease onset. Examples are: 1) cortisol inhibits systemic chronic inflammatory disease, and 2) stress stimulates systemic chronic inflammatory disease. The active immune system in systemic chronic inflammatory diseases competes with the brain and other organ systems for energy-rich fuels, which leads to several disease sequelae. Chronic disease sequelae are sickness behaviour/fatigue/depressive symptoms, sleep disturbances, anorexia and malnutrition, bone loss, muscle wasting and cachectic obesity, insulin resistance with hyperinsulinaemia (accompanied by resistance to insulin-like growth factor–1), dyslipidaemia, alterations in the steroid hormone axes, disturbances of the hypothalamic-pituitary-gonadal (HPG) axis, elevated sympathetic tone, hypertension and volume overload, decreased parasympathetic tone, inflammation–related anaemia, and circadian rhythms of the symptoms. Disease sequelae are inherent to the disease and must be consistently treated.



Publication History

Article published online:
02 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hench PS. The ameliorating effect of pregnancy on chronic atrophic (infectious, rheumatoid) arthritis, fibrositis, and intermittent hydrarthrosis. Proc Staff Meetings Mayo Clinic 1938; 13: 161-167
  • 2 Hench PS, Slocumb CH, Holley HF. et al. Effect of cortisone and pituitary adrenocorticotropic hormone (ACTH) on rheumatic diseases. J Am Med Assoc 1950; 1327-1335
  • 3 Labrie F. Intracrinology. Mol Cell Endocrinol 1991; 78: C113-C118
  • 4 Straub RH. The complex role of estrogens in inflammation. Endocr Rev 2007; 28: 521-574
  • 5 Cutolo M, Straub RH. Sex steroids and autoimmune rheumatic diseases: state of the art. Nat Rev Rheumatol 2020; 16: 628-644
  • 6 Whitacre CC. Sex differences in autoimmune disease. Nat Immunol 2001; 2: 777-780
  • 7 Cohen-Solal JF, Jeganathan V, Hill L. et al. Hormonal regulation of B-cell function and systemic lupus erythematosus. Lupus 2008; 17: 528-532
  • 8 Trigunaite A, Dimo J, Jorgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol 2015; 294: 87-94
  • 9 Kissick HT, Sanda MG, Dunn LK. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc Natl Acad Sci U S A 2014; 111: 9887-9892
  • 10 Carlsten H, Nilsson N, Jonsson R. et al. Estrogen accelerates immune complex glomerulonephritis but ameliorates T cell-mediated vasculitis and sialadenitis in autoimmune MRL lpr/lpr mice. Cell Immunol 1992; 144: 190-202
  • 11 Stark K, Straub RH, Rovensky J. et al. CYB5A polymorphism increases androgens and reduces risk of rheumatoid arthritis in women. Arthritis Res Ther 2015; 17: 56
  • 12 Uthman I, Senecal JL. Onset of rheumatoid arthritis after surgical treatment of Cushing’s disease. J Rheumatol 1995; 22: 1964-1966
  • 13 Sternberg EM, Young WS, Bernardini R. et al. A central nervous system defect in biosynthesis of corticotropin- releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc Natl Acad Sci U S A 1989; 86: 4771-4775
  • 14 Straub RH, Bijlsma JW, Masi A. et al. Role of neuroendocrine and neuroimmune mechanisms in chronic inflammatory rheumatic diseases-The 10-year update. Semin Arthritis Rheum 2013; 43: 392-404
  • 15 Carsin-Vu A, Oubaya N, Mulé S. et al. MDCT Linear and Volumetric Analysis of Adrenal Glands: Normative Data and Multiparametric Assessment. Eur Radiol 2016; 26: 2494-2501
  • 16 Thompson M, Bywaters EGL. Unilateral rheumatoid arthritis following hemiplegia. Ann Rheum Dis 1962; 21: 370-370
  • 17 Dolan AL. Asymmetric rheumatoid vasculitis in a hemiplegic patient. Ann Rheum Dis 1995; 54: 532
  • 18 Glynn JJ, Clayton ML. Sparing effect of hemiplegia on tophaceous gout. Ann Rheum Dis 1976; 35: 534-535
  • 19 Sethi S, Sequeira W. Sparing effect of hemiplegia on scleroderma. Ann Rheum Dis 1990; 49: 999-1000
  • 20 Pongratz G, Straub RH. Role of peripheral nerve fibres in acute and chronic inflammation in arthritis. Nat Rev Rheumatol 2013; 9: 117-126
  • 21 Neufeld KM, Karunanayake CP, Maenz LY. et al. Stressful life events antedating chronic childhood arthritis. J Rheumatol 2013; 40: 1756-1765
  • 22 Straub RH. The origin of chronic inflammatory systemic diseases and their sequelae. Hrsg San Diego: Academic Press; 2015
  • 23 Lee YC, Agnew-Blais J, Malspeis S. et al. Post-Traumatic Stress Disorder and Risk for Incident Rheumatoid Arthritis. Arthritis Care Res 2016; 68: 292-298
  • 24 Buttgereit F. Views on glucocorticoid therapy in rheumatology: the age of convergence. Nat Rev Rheumatol 2020; 16: 239-246
  • 25 Saldanha C, Tougas G, Grace E. Evidence for anti-inflammatory effect of normal circulating plasma cortisol. Clin Exp Rheumatol 1986; 4: 365-366
  • 26 Doria A, Iaccarino L, Arienti S. et al. Th2 immune deviation induced by pregnancy: the two faces of autoimmune rheumatic diseases. Reprod Toxicol 2006; 22: 234-241
  • 27 Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res 2014; 58: 193-210
  • 28 Buttgereit F, Burmester GR, Straub RH. et al. Exogenous and endogenous glucocorticoids in rheumatic diseases. Arthritis Rheum 2011; 63: 1-9
  • 29 Huong DL, Wechsler B, Vauthier-Brouzes D. et al. Importance of planning ovulation induction therapy in systemic lupus erythematosus and antiphospholipid syndrome: a single center retrospective study of 21 cases and 114 cycles. Semin Arthritis Rheum 2002; 32: 174-188
  • 30 Straub RH, Cutolo M. Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum 2007; 56: 399-408
  • 31 Buttgereit F, Doering G, Schaeffler A. et al. Efficacy of modified-release versus standard prednisone to reduce duration of morning stiffness of the joints in rheumatoid arthritis (CAPRA-1): a double-blind, randomised controlled trial. Lancet 2008; 371: 205-214
  • 32 Buttgereit F, Mehta D, Kirwan J. et al. Low-dose prednisone chronotherapy for rheumatoid arthritis: a randomised clinical trial (CAPRA-2). Ann Rheum Dis 2013; 72: 204-210
  • 33 Adams JS, Hewison M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat Clin Pract Endocrinol Metab 2008; 4: 80-90
  • 34 Cutolo M, Plebani M, Shoenfeld Y. et al. Vitamin D endocrine system and the immune response in rheumatic diseases. Vitam Horm 2011; 86: 327-351
  • 35 Cutolo M, Otsa K, Laas K. et al. Circannual vitamin d serum levels and disease activity in rheumatoid arthritis: Northern versus Southern Europe. Clin Exp Rheumatol 2006; 24: 702-704
  • 36 Kamen DL, Tangpricha V. Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity. J Mol Med 2010; 88: 441-450
  • 37 Smith RD. Effect of hemiparesis on rheumatoid arthritis. Arthritis Rheum 1979; 22: 1419-1420
  • 38 Keyszer G, Langer T, Kornhuber M. et al. Neurovascular mechanisms as a possible cause of remission of rheumatoid arthritis in hemiparetic limbs. Ann Rheum Dis 2004; 63: 1349-1351
  • 39 Kane D, Lockhart JC, Balint PV. et al. Protective effect of sensory denervation in inflammatory arthritis (evidence of regulatory neuroimmune pathways in the arthritic joint). Ann Rheum Dis 2005; 64: 325-327
  • 40 Steptoe A, Hamer M, Chida Y. The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun 2007; 21: 901-912
  • 41 Bierhaus A, Wolf J, Andrassy M. et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A 2003; 100: 1920-1925
  • 42 Straub RH. Rheumatoid arthritis: Stress in RA: a trigger of proinflammatory pathways?. Nat Rev Rheumatol 2014; 10: 516-518
  • 43 Vasamsetti SB, Florentin J, Coppin E. et al. Sympathetic Neuronal Activation Triggers Myeloid Progenitor Proliferation and Differentiation. Immunity 2018; 49: 93-106
  • 44 Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 2005; 5: 243-251
  • 45 de Brouwer SJ, Van MH, Stormink C. et al. Immune responses to stress in rheumatoid arthritis and psoriasis. Rheumatology (Oxford) 2014; 53: 1844-1848
  • 46 Okada Y, Wu D, Trynka G. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014; 506: 376-381
  • 47 Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 2009; 30: 383-391
  • 48 Straub RH, Cutolo M, Buttgereit F. et al. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med 2010; 267: 543-560
  • 49 Straub RH. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Res Ther 2014; 16: S4 (pages 1–15)
  • 50 Straub RH. The brain and immune system prompt energy shortage in chronic inflammation and ageing. Nat Rev Rheumatol 2017; 13: 743-751
  • 51 Dantzer R, O'Connor JC, Freund GG. et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9: 46-56
  • 52 Detert J, Dziurla R, Hoff P. et al. Effects of treatment with etanercept versus methotrexate on sleep quality, fatigue and selected immune parameters in patients with active rheumatoid arthritis. Clin Exp Rheumatol 2016; 34: 848-856
  • 53 Straub RH, Cutolo M, Pacifici M. Evolutionary medicine and bone loss in chronic inflammatory diseases – a theory of inflammation-related osteopenia. Semin Arthritis Rheum 2015; 45: 220-228
  • 54 Roubenoff R. Rheumatoid cachexia: a complication of rheumatoid arthritis moves into the 21st century. Arthritis Res Ther 2009; 11: 108
  • 55 Hahn BH, Grossman J, Ansell BJ. et al. Altered lipoprotein metabolism in chronic inflammatory states: proinflammatory high-density lipoprotein and accelerated atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res Ther 2008; 10: 213
  • 56 Tsigos C, Papanicolaou DA, Defensor R. et al. Dose effects of recombinant human interleukin-6 on pituitary hormone secretion and energy expenditure. Neuroendocrinology 1997; 66: 54-62
  • 57 Cutolo M, Foppiani L, Prete C. et al. Hypothalamic-pituitary-adrenocortical axis function in premenopausal women with rheumatoid arthritis not treated with glucocorticoids. J Rheumatol 1999; 26: 282-288
  • 58 Kanik KS, Chrousos GP, Schumacher HR. et al. Adrenocorticotropin, glucocorticoid, and androgen secretion in patients with new onset synovitis/rheumatoid arthritis: relations with indices of inflammation. J Clin Endocrinol Metab 2000; 85: 1461-1466
  • 59 Straub RH, Paimela L, Peltomaa R. et al. Inadequately low serum levels of steroid hormones in relation to IL-6 and TNF in untreated patients with early rheumatoid arthritis and reactive arthritis. Arthritis Rheum 2002; 46: 654-662
  • 60 Wolff C, Krinner K, Schroeder JA. et al. Inadequate corticosterone levels relative to arthritic inflammation are accompanied by altered mitochondria/cholesterol breakdown in adrenal cortex: a steroid-inhibiting role of IL-1beta in rats. Ann Rheum Dis 2015; 74: 1890-1897
  • 61 Stangl H, Krammetsvogl A, Lesiak M. et al. MHC/class-II-positive cells inhibit corticosterone of adrenal gland cells in experimental arthritis: a role for IL-1β, IL-18, and the inflammasome. Sci Rep 2020; 10: 17071 doi: 17010.11038/s41598-17020-74309-17070
  • 62 Weidler C, Struharova S, Schmidt M. et al. Tumor necrosis factor inhibits conversion of dehydroepiandrosterone sulfate (DHEAS) to DHEA in rheumatoid arthritis synovial cells: a prerequisite for local androgen deficiency. Arthritis Rheum 2005; 52: 1721-1729
  • 63 Schmidt M, Hartung R, Capellino S. et al. Estrone/17beta-estradiol conversion to, and tumor necrosis factor inhibition by, estrogen metabolites in synovial cells of patients with rheumatoid arthritis and patients with osteoarthritis. Arthritis Rheum 2009; 60: 2913-2922
  • 64 Straub RH. Evolutionary medicine and chronic inflammatory state – known and new concepts in pathophysiology. J Mol Med 2012; 90: 523-534
  • 65 Straub RH, Ehrenstein B, Gunther F. et al. Increased extracellular water measured by bioimpedance and by increased serum levels of atrial natriuretic peptide in RA patients-signs of volume overload. Clin Rheumatol 2017; 36: 1041-1051
  • 66 Günther F, Ehrenstein B, Hartung W. et al. Increased extracellular water measured by bioimpedance analysis and increased serum levels of atrial natriuretic peptide in polymyalgia rheumatica patients : Signs of volume overload. Z Rheumatol 2020; DOI: 10.1007/s00393-00020-00845-00399.
  • 67 Sloan RP, McCreath H, Tracey KJ. et al. RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med 2007; 13: 178-184
  • 68 Weinberg ED. Iron availability and infection. Biochim Biophys Acta 2009; 1790: 600-605
  • 69 Schaible UE, Kaufmann SH. Iron and microbial infection. Nat Rev Microbiol 2004; 2: 946-953
  • 70 Crofford LJ, Kalogeras KT, Mastorakos G. et al. Circadian relationships between interleukin (IL)-6 and hypothalamic- pituitary-adrenal axis hormones: failure of IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid arthritis. J Clin Endocrinol Metab 1997; 82: 1279-1283