Synlett 2021; 32(04): 406-410
DOI: 10.1055/a-1319-6237
cluster
Radicals – by Young Chinese Organic Chemists

Neutral-Eosin Y-Catalyzed Regioselective Hydroacylation of Aryl Alkenes under Visible-Light Irradiation

Haiwang Liu
a   Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore
,
Fei Xue
a   Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore
b   Institute of Material Physics and Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. of China
,
Mu Wang
a   Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore
,
Xinxin Tang
a   Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore
,
Jie Wu
a   Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore
c   National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. of China
› Institutsangaben
We are grateful for the financial support provided by the Ministry of Education (MOE) of Singapore (MOE2017-T2-2081), the National Natural Science Foundation of China (Grants 21871205, 22071170), and the National University of Singapore (Suzhou) Research Institute.


Abstract

Styrene derivatives were hydroacylated with exclusive anti-Markovnikov selectivity by using neutral eosin Y as a direct hydrogen-atom-transfer (HAT) catalyst under visible-light irradiation. Aldehydes and styrenes with various substituents were tolerated (>20 examples), giving the corresponding products in moderate to high yields. The key acyl radical intermediate was generated from a direct HAT process induced by photoexcited eosin Y. Subsequent addition to styrenes and a reverse HAT process generated the ketone products.

Supporting Information



Publikationsverlauf

Eingereicht: 15. Oktober 2020

Angenommen nach Revision: 20. November 2020

Accepted Manuscript online:
20. November 2020

Artikel online veröffentlicht:
21. Dezember 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Shibasaki M, Kanai M. Chem. Rev. 2008; 108: 2853
    • 1b Prasad PK, Reddi RN, Arumugam S. Org. Biomol. Chem. 2018; 16: 9334
  • 3 Leung JC, Krische MJ. Chem. Sci. 2012; 3: 2202
    • 4a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 4b Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 1586
    • 4c Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 4d Ruan LH, Cheng CC, Zhang XX, Sun J. Youji Huaxue 2018; 38: 3155
    • 4e Chen Y, Lu L.-Q, Yu D.-G, Zhu C.-J, Xiao W.-J. Sci. China: Chem. 2019; 62: 24
    • 4f Chen J, Li Y, Mei L, Wu H. Youji Huaxue 2019; 39: 3040
    • 4g Jiang H, Studer A. CCS Chem. 2019; 1: 38
    • 5a Esposti S, Dondi D, Fagnoni M, Albini A. Angew. Chem. Int. Ed. 2007; 46: 2531
    • 5b Protti S, Ravelli D, Fagnoni M, Albini A. Chem. Commun. 2009; 7351
    • 5c Ravelli D, Zema M, Mella M, Fagnoni M, Albini A. Org. Biomol. Chem. 2010; 8: 4158
    • 5d Fan P, Zhang C, Lan Y, Lin Z, Zhang L, Wang C. Chem. Commun. 2019; 55: 12691
    • 5e Cao H, Kuang Y, Shi X, Wong KL, Tan BB, Kwan JM. C, Liu X, Wu J. Nat. Commun. 2020; 11: 1956
    • 5f Tzirakis MD, Orfanopoulos M. J. Am. Chem. Soc. 2009; 131: 4063
  • 6 Capaldo L, Riccardi R, Ravelli D, Fagnoni M. ACS Catal. 2018; 8: 304
    • 7a Liu Y, Wang Q.-L, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Yang C.-A, Tang K.-W. J. Org. Chem. 2018; 83: 2210
    • 7b Wang C.-M, Song D, Xia P.-J, Wang J, Xiang H.-Y, Yang H. Chem. Asian J. 2018; 13: 271
    • 7c Sarkar S, Banerjee A, Yao W, Patterson EV, Ngai M.-Y. ACS Catal. 2019; 9: 10358
    • 7d Zhao Q.-S, Xu G.-Q, Liang H, Wang Z.-Y, Xu P.-F. Org. Lett. 2019; 21: 8615
    • 8a Chu L, Lipshultz JM, MacMillan DW. J. A. C. Angew. Chem. 2015; 127: 8040
    • 8b Morack T, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 1208
    • 8c Zhao J.-J, Zhang H.-H, Shen X, Yu S. Org. Lett. 2019; 21: 913
    • 9a Stache EE, Ertel AB, Rovis T, Doyle AG. ACS Catal. 2018; 8: 11134
    • 9b Zhang M, Xie J, Zhu C. Nat. Commun. 2018; 9: 3517
    • 9c Martinez Alvarado JI, Ertel AB, Stegner A, Stache EE, Doyle AG. Org. Lett. 2019; 21: 9940
    • 9d Zhang M, Yuan X.-A, Zhu C, Xie J. Angew. Chem. Int. Ed. 2019; 58: 312
  • 10 Zhao X, Li B, Xia W. Org. Lett. 2020; 22: 1056
  • 12 Banerjee A, Lei Z, Ngai M.-Y. Synthesis 2019; 51: 303
    • 13a Wu C.-S, Liu R.-X, Ma D.-Y, Luo C.-P, Yang L. Org. Lett. 2019; 21: 6117
    • 13b Vu MD, Das M, Liu X.-W. Chem. Eur. J. 2017; 23: 15899
  • 14 Voutyritsa E, Kokotos CG. Angew. Chem. Int. Ed. 2020; 59: 1735
    • 15a Hydrogen Transfer Reactions, Reductions and Beyond . Guillena G, Ramón DJ. Springer International; Cham: 2016
    • 15b Salamone M, Bietti M. Acc. Chem. Res. 2015; 48: 2895
    • 15c Yan D.-M, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 378
    • 16a Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2017: 2056
    • 16b Jia P, Li Q, Poh WC, Jiang H, Liu H, Deng H, Wu J. Chem 2020; 6: 1766
    • 16c Deng H.-P, Zhou Q, Wu J. Angew. Chem. Int. Ed. 2018; 57: 12661
    • 17a Fan X.-Z, Rong J.-W, Wu H.-L, Zhou Q, Deng H.-P, Tan JD, Xue C.-W, Wu L.-Z, Tao H.-R, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514
    • 17b Fan X, Xiao P, Jiao Z, Yang T, Dai X, Xu W, Tan JD, Cui G, Su H, Fang W, Wu J. Angew. Chem. 2019; 131: 12710
    • 17c Kuang Y, Wang K, Shi X, Huang X, Meggers E, Wu J. Angew. Chem. Int. Ed. 2019; 58: 16859
    • 17d Kuang Y, Cao H, Tang H, Chew J, Chen W, Shi X, Wu J. Chem. Sci. 2020; 11: 8912
    • 17e Yan J, Cheo HW, Teo WK, Shi X, Wu H, Idres SB, Deng L.-W, Wu J. J. Am. Chem. Soc. 2020; 142: 11357
    • 18a Allen NS, Hurley JP, Bannister D, Follows GW. Eur. Polym. J. 1992; 28: 1309
    • 18b Allen NS, Hurley JP, Bannister D, Follows GW, Navaratnam S, Parsons BJ. J. Photochem. Photobiol., A 1992; 68: 213
  • 19 Ethyl 4-(3-Phenylpropanoyl)benzoate (8); Typical Procedure A 10 mL reaction tube equipped with a magnetic stirrer bar was charged with ethyl 4-formylbenzoate (1.0 mmol, 5.0 equiv), styrene (0.2 mmol, 1.0 equiv), eosin Y (0.01 mmol, 0.05 equiv), and PhF (4 mL). The tube was then sealed and degassed by using an argon balloon with a subsequent backfill with argon. The tube was then equipped with an argon balloon and placed under blue LEDs (3 m strip; 27 W) and irradiated for 72 h at 80 °C. The solvent was removed on a rotary evaporator under reduced pressure, and the residue was purified by column chromatography [silica gel, hexane–EtOAc (15:1 to 1:1)] to give a colorless liquid; yield: 20.8 mg (36%). 1H NMR (500 MHz, CDCl3): δ = 8.14 0 8.08 (m, 2 H), 8.02–7.96 (m, 2 H), 7.34–7.27 (m, 2 H), 7.27–7.17 (m, 3 H), 4.40 (q, J = 7.1 Hz, 2 H), 3.39–3.28 (m, 2 H), 3.08 (t, J = 7.6 Hz, 2 H), 1.41 (t, J = 7.1 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 198.77, 165.76, 141.00, 139.97, 134.25, 129.82, 128.59, 128.43, 127.91, 126.26, 61.46, 40.83, 30.01, 14.29. GC/MS: m/z = 282.1 [M+].
  • 20 4-(3-Oxo-3-phenylpropyl)phenyl Acetate (15) Prepared by the typical procedure from PhCHO (1.0 mmol, 5.0 equiv), 4-vinylphenyl acetate (0.2 mmol, 1.0 equiv), and eosin Y (0.01 mmol, 0.05 equiv) as a colorless liquid; yield: 31.1 mg (58%). 1H NMR (400 MHz, CDCl3): δ = 8.00–7.91 (m, 2 H), 7.63–7.53 (m, 1 H), 7.51–7.41 (m, 2 H), 7.30–7.20 (m, 2 H), 7.05–6.94 (m, 2 H), 3.34–3.20 (m, 2 H), 3.06 (t, J = 7.6 Hz, 2 H), 2.28 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 199.03, 169.65, 149.01, 138.89, 136.82, 133.13, 129.42, 128.65, 128.04, 121.56, 40.37, 29.46, 21.13. HRMS (ESI): m/z [M + Na]+ calcd for C17H16NaO3: 291.0992; found: 291.0995.