ZWR - Das Deutsche Zahnärzteblatt 2020; 129(12): 642-650
DOI: 10.1055/a-1300-0171
Fortbildung | Neue Technologien

3-D-Druck in der prothetischen Zahnmedizin: Wo stehen wir?

Fabian Huettig
,
Pablo Krämer-Fernandez
,
Alexey Unkovskiy
,
Sebastian Spintzyk

Die additive Fertigung von (Medizin-)Produkten erhielt spätestens mit der COVID-Pandemie im Jahr 2020 große Aufmerksamkeit. Bereits seit 2015 etablieren sich verschiedene Verfahren in Dentallaboren und Dentalindustrie, die auch einen breiten Einsatz in der prothetischen Zahnmedizin ermöglichen. Wie es um den wissenschaftlichen Stand praktischer Anwendungen derzeit bestellt und was noch zu erwarten ist, erläutert der vorliegende Artikel.



Publication History

Article published online:
11 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Spintzyk S, Unkovskiy A, Elteste T. et al. Additive Fertigungsverfahren – Anwendung in der Dentaltechnik: heute & morgen. Zahntech Mag 2018; 22: 261-270
  • 2 Revilla-Leon M, Ozcan M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J Prosthodont 2019; 28: 146-158
  • 3 Revilla-León M, Sadeghpour M, Özcan M. A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistry. J Prosthodont 2020; DOI: 10.1111/jopr.13212.
  • 4 Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc 2006; 137: 1289-1296
  • 5 Xepapadeas AB, Hüttig F, Oertel AF. et al. Biegefestigkeit eines additiv verarbeitbaren Schienenmaterials nach Wasserlagerung und verlängerter Reinigungszeit in Isopropanol. Quintessenz 2018; 69: 1442-1448
  • 6 Zisook RE, Simmons BD, Vater M. et al. Emissions associated with operations of four different additive manufacturing or 3D printing technologies. J Occup Environ Hyg 2020; 17: 464-479 doi:10.1080/15459624.2020.1798012
  • 7 Nagy Z, Simon B, Mennito A. et al. Comparing the trueness of seven intraoral scanners and a physical impression on dentate human maxilla by a novel method. BMC Oral Health 2020; 20: 97
  • 8 Unkovskiy A, Spintzyk S, Axmann D. et al. Additive Manufacturing: A Comparative Analysis of Dimensional Accuracy and Skin Texture Reproduction of Auricular Prostheses Replicas. J Prosthodont 2019; 28: e460-e468
  • 9 Unkovskiy A, Bui PH, Schille C. et al. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent Mater 2018; 34: e324-e333
  • 10 Nestler N, Wesemann C, Spies BC. et al. Dimensional accuracy of extrusion- and photopolymerization-based 3D printers: In vitro study comparing printed casts. J Prosthet Dent 2020; DOI: 10.1016/j.prosdent.2019.11.011.
  • 11 Kuscu E, Wahl E, Klink A. et al. Scan to cast – von der digitalen Abformung zur gegossenen Goldrestauration. Quintessenz Zahntech 2019; 45: 78-86
  • 12 Xu Y, Huettig F, Schille C. et al. Peel bond strength between 3D printing tray materials and elastomeric impression/adhesive systems: A laboratory study. Dent Mater 2020; 36: e241-e254
  • 13 Revilla-León M, Meyers MJ, Zandinejad A. et al. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restor Dent 2019; 31: 51-57
  • 14 Scotti CK, Velo MMdAC, Rizzante FAP. et al. Physical and surface properties of a 3D-printed composite resin for a digital workflow. J Prosthet Dent 2020; 124: 614.e1-614.e5 doi:10.1016/j.prosdent.2020.03.029
  • 15 Reymus M, Hickel R, Keßler A. Accuracy of CAD/CAM-fabricated bite splints: milling vs. 3D printing. Clin Oral Investig 2020; DOI: 10.1007/s00784-020-03329-x.
  • 16 Huettig F, Kustermann A, Kuscu E. et al. Polishability and wear resistance of splint material for oral appliances produced with conventional, subtractive, and additive manufacturing. J Mech Behav Biomed Mater 2017; 75: 175-179
  • 17 Lutz AM, Hampe R, Roos M. et al. Fracture resistance and 2-body wear of 3-dimensional-printed occlusal devices. J Prosthet Dent 2019; 121: 166-172
  • 18 Mutschler M, Krämer Fernandez P, Kuscu E. et al. Digitale Konstruktion und Fertigung einer Interimsprothese aus Valplast® . Quintessenz Zahntech 2019; 45: 1140-1152
  • 19 Unkovskiy A, Wahl E, Zander AT. et al. Intraoral scanning to fabricate complete dentures with functional borders: a proof-of-concept case report. BMC Oral Health 2019; 19: 46
  • 20 Krämer Fernandez P, Wahl E, Hüttig F. et al. Herstellung von Kopie- und Reiseprothesen. Quintessenz Zahntech 2020; 46: 732-743
  • 21 Yoon H-I, Hwang H-J, Ohkubo C. et al. Evaluation of the trueness and tissue surface adaptation of CAD-CAM mandibular denture bases manufactured using digital light processing. J Prosthet Dent 2018; 120: 919-926
  • 22 Nishiyama H, Taniguchi A, Tanaka S. et al. Novel fully digital workflow for removable partial denture fabrication. J Prosthodont Res 2020; 64: 98-103
  • 23 Krämer Fernandez P, Kuscu E, Weise H. et al. Rapid additive manufacturing of an obturator prosthesis with the use of an intraoral scanner: A dental technique. J Prosthet Dent 2020; DOI: 10.1016/j.prosdent.2020.07.033. [im Druck]
  • 24 Revilla-Leon M, Meyer MJ, Zandinejad A. et al. Additive manufacturing technologies for processing zirconia in dental applications. Int J Comput Dent 2020; 23: 27-37