Planta Med 2021; 87(03): 201-208
DOI: 10.1055/a-1298-4706
Biological and Pharmacological Activity
Original Papers

Bioactive Isocedrenes from Perezia multiflora

Sandra Bourgeade-Delmas
1   UMR 152 Pharmadev, Université de Toulouse, IRD, UPS, Toulouse, France
,
Christiane André-Barrès
2   UMR 5068 LSPCMIB, Université de Toulouse, CNRS, UPS, Toulouse, France
,
Jeanne Lucas
1   UMR 152 Pharmadev, Université de Toulouse, IRD, UPS, Toulouse, France
,
Manon Trinel
1   UMR 152 Pharmadev, Université de Toulouse, IRD, UPS, Toulouse, France
,
Denis Castillo Pareja
3   Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
,
1   UMR 152 Pharmadev, Université de Toulouse, IRD, UPS, Toulouse, France
3   Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
› Author Affiliations

Abstract

Four isocedrenes (1 – 4), including one new compound (2), were isolated from an ethanolic extract of the aerial parts of Perezia multiflora by bioactivity-guided fractionation. For compounds 1 and 3, a revised stereochemical assignment is proposed based on molecular modeling studies using DFT-NMR calculations. Antiparasitic activity of the four compounds was evaluated using an in vitro culture of Plasmodium falciparum and axenic amastigotes of Leishmania infantum. IC50 values ranged from 0.81 to 16.1 µM (P. falciparum) and 0.16 to 2.03 µM (L. infantum). Toxicity was evaluated against J774A.1 mouse macrophages or human macrophages generated from THP-1 monocytic cells (IC50 values ranging from 0.16 to 2.64 µM). Compound 4 exhibited weak selectivity against P. falciparum with a selectivity index (SI = CC50/IC50) of 3. No selectivity was observed for compounds 1 – 3 against both parasites.

Supporting Information



Publication History

Received: 08 July 2020

Accepted after revision: 17 October 2020

Article published online:
23 November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Missouri Botanical Garden. Tropicos.org. Perezia multiflora . Accessed August 25, 2020 at: https://www.tropicos.org/name/2701110
  • 2 Mostacero-León J, Castillo-Picón F, Mejía-Coico FR, Gamarra-Torres OA, Charcape-Ravelo JM, Ramirez-Vargas RA. Plantas medicinales del Perú, 1 ed. Trujillo: Asamblea Nacional de Rectores; 2011
  • 3 Bohlmann F, Zdero C. Neue Sesquiterpene mit anomalem Kohlenstoffgerüst aus der Tribus Mutisieae . Chem Ber 1979; 112: 427-434
  • 4 Bohlmann F, Zdero C. Über eine neue Gruppe von Sesquiterpenlactonene aus der Gattung Trixis . Chem Ber 1979; 112: 435-444
  • 5 Bohlmann F, Zdero C, King RM, Robinson H. A tetracyclic sesquiterpene, further isocedrene, and guaiene derivatives from Jungia stuebelii . Phytochemistry 1983; 22: 1201-1206
  • 6 Singh P, Jakupovic J, Bohlmann F. Isocedrene derivatives and other sesquiterpenes from Moscharia pinnatifida . Phytochemistry 1985; 24: 1525-1529
  • 7 Zdero C, Bohlmann F, Niemeyer HM. Isocedrene and guaiane derivatives from Pleocarphus revolutus . J Nat Prod 1988; 51: 509-512
  • 8 Zdero C, Bohlmann F, Sanchez H, Dominguez XA. Isocedrene derivatives and other constituents from Acourtia nana . Phytochemistry 1991; 30: 2695-2697
  • 9 Zdero C, Bohlmann F, King RM, Robinson H. α-Isocedrene derivatives, 5-methyl coumarins and other constituents from the subtribe Nassauviinae of the Compositae. Phytochemistry 1986; 25: 2873-2882
  • 10 De Riscala EC, Catalan CAN, Sosa VE, Gutierrez AB, Herz W. Trixane derivatives from Trixis praestans . Phytochemistry 1988; 27: 2343-2346
  • 11 Ybarra MI, Catalan CAN, Diaz JG, Herz W. A cyperane and trixanes from Jungia polita . Phytochemistry 1992; 31: 3627-3629
  • 12 Azevedo L, Faqueti L, Kritsanida M, Efstathiou A, Smirlis D, Franchi GCJ, Genta-Jouve G, Michel S, Sandjo LP, Grougnet R, Biavatti MW. Three new trixane glycosides obtained from the leaves of Jungia sellowii less. using centrifugal partition chromatography. Beilstein J Org Chem 2016; 12: 674-683
  • 13 Kotowicz C, Hernandez LR, Cerda-Garcia-Rojas CM, Villecco MB, Catalan CAN, Joseph-Nathan P. Absolute configuration of trixanolides from Trixis pallida . J Nat Prod 2001; 64: 1326-1331
  • 14 Maldonadoa EM, Salamanca E, Gimenez A, Saavedra G, Sterner O. Antileishmanial metabolites from Trixis antimenorrhoea . Phytochem Lett 2014; 10: 281-286
  • 15 Zdero C, Bohlmann F, Solomon J, Dominguez XA. Further isocedrene derivatives and other constituents from Perezia species. Phytochemistry 1988; 27: 849-853
  • 16 Kirby AJ. Stereoelectronic Effects. Oxford: Oxford University Press; 1996
  • 17 Lodewyk MW, Siebert MR, Tantillo DJ. Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 2012; 112: 1839-1862
  • 18 Castro I, Fabre N, Bourgeade-Delmas S, Saffon N, Gandini C, Sauvain M, Castillo D, Bourdy G, Jullian V. Structural characterization and anti-infective activity of 9, 10-seco-29-norcycloartane glycosides isolated from the flowers of the peruvian medicinal plant Cordia lutea . J Nat Prod 2019; 82: 3233-3241