Aktuelle Rheumatologie 2020; 45(06): 559-567
DOI: 10.1055/a-1285-4125
Übersichtsarbeit

JAK-Inhibitoren für die Behandlung hämatoonkologischer Erkrankungen

JAK Inhibitors for the Treatment of Haemato-Oncological Diseases
Torsten Steinbrunn
1   Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
,
Josip Zovko
1   Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
,
Sabrina Kraus
1   Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
› Author Affiliations

Zusammenfassung

Die konstitutive Aktivierung des JAK-STAT-Signalwegs ist charakteristisch für die Pathogenese der myeloproliferativen Neoplasien, speziell der primären Myelofibrose, der Polycythaemia vera und der essentiellen Thrombozythämie. Die Einführung von oral verfügbaren JAK-Inhibitoren in die Klinik brachte einen entscheidenden Fortschritt für die pharmakologische Behandlung der Myelofibrose und der Polycythaemia vera, wenngleich damit noch keine Heilung verbunden ist. Im Vordergrund steht die Verbesserung der Lebensqualität der meist älteren Patienten durch Kontrolle krankheitsbedingter konstitutioneller Symptome, Reduktion einer bestehenden Splenomegalie und Vermeidung insbesondere von thromboembolischen Folgekomplikationen. Darüber hinaus kann die Therapie von Myelofibrose-Patienten mit JAK-Inhibitoren jedoch auch deren Krankheitsverlauf verlangsamen und ihr Gesamtüberleben verlängern. Der bislang einzige in Europa zugelassene JAK-Inhibitor Ruxolitinib hemmt die Isoformen JAK1 und JAK2 und besitzt sowohl antiinflammatorisches als auch antiproliferatives Potenzial. Damit zeigt dieser Inhibitor überdies eine gute Wirkung in der Therapie der Graft-versus-Host-Erkrankung nach allogener hämatopoetischer Stammzelltransplantation. Mit Fedratinib, Pacritinib und Momelatinib befinden sich derzeit 3 weitere vielversprechende JAK-Inhibitoren mit etwas unterschiedlichen Wirkprofilen in der klinischen Phase III-Testung. Diese zeigen auch bei Patienten mit unwirksamer oder unverträglicher Vorbehandlung mit Ruxolitinib Wirksamkeit, sodass eine kontinuierliche Weiterentwicklung der entsprechenden Therapiestrategien abzusehen ist.

Abstract

The constitutive activation of the JAK-STAT signalling pathway is a pathogenetic hallmark of myeloproliferative neoplasms, in particular of primary myelofibrosis, polycythaemia vera and essential thrombocythaemia. The introduction of orally available JAK inhibitors into clinics yielded a major progress for the pharmacological treatment of myelofibrosis and polycythaemia vera, although they have not been able to cure these conditions. The primary goal is to improve the quality of life in the predominantly elderly patients by controlling the constitutional symptoms caused by the disease, to reduce existing splenomegaly and to prevent subsequent thromboembolic complications. Moreover, the therapeutic administration of JAK inhibitors to patients with myelofibrosis may decelerate the course of their disease and prolong their overall survival. So far, Ruxolitinib is the only JAK inhibitor approved in Europe. It targets both isoforms JAK1 and JAK2 and has antiinflammatory as well as antiproliferative potential. Consequently, this inhibitor also proves effective in treating graft-versus-host disease occurring after allogeneic haematopoietic stem cell transplantation. Next in line, Fedratinib, Pacritinib and Momelatinib are three promising JAK inhibitors with slightly different activity profiles, which are currently undergoing clinical phase III testing. They prove effective even in patients with prior ineffective or intolerable exposure to Ruxolitinib. Thus, a continuous improvement of the respective treatment strategies can be expected.



Publication History

Article published online:
04 November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 You H, Xu D, Zhao J. et al. JAK Inhibitors: Prospects in Connective Tissue Diseases. Clin Rev Allergy Immunol 2020; DOI: https://doi.org/10.1007/s12016-020-08786-6.
  • 2 Rampal R, Al-Shahrour F, Abdel-Wahab O. et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood 2014; 123: e123-133
  • 3 Zeiser R, Burchert A, Lengerke C. et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia 2015; 29: 2062-2068
  • 4 Witte T. JAK-Inhibitoren in der Rheumatologie. Dtsch Med Wochenschr 2019; 144: 748-752
  • 5 Ajayi S, Becker H, Reinhardt H. et al. Ruxolitinib. Recent Results Cancer Res 2018; 212: 119-132
  • 6 Tefferi A.. Myeloproliferative neoplasms: A decade of discoveries and treatment advances. Am J Hematol 2016; 91: 50-58
  • 7 Arber DA, Orazi A, Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391-2405
  • 8 Tremblay D, Schwartz M, Bakst R. et al. Modern management of splenomegaly in patients with myelofibrosis. Ann Hematol 2020; 99: 1441-1451
  • 9 Kröger NM, Deeg JH, Olavarria E. et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia 2015; 29: 2126-2133
  • 10 Iurlo A, Cattaneo D, Gianelli U. Blast Transformation in Myeloproliferative Neoplasms: Risk Factors, Biological Findings, and Targeted Therapeutic Options. Int J Mol Sci 2019; 20
  • 11 Tallarico M, Odenike O. Secondary acute myeloid leukemias arising from Philadelphia chromosome negative myeloproliferative neoplasms: pathogenesis, risk factors, and therapeutic strategies. Curr Hematol Malig Rep 2015; 10: 112-117
  • 12 Kennedy JA, Atenafu EG, Messner HA. et al. Treatment outcomes following leukemic transformation in Philadelphia-negative myeloproliferative neoplasms. Blood 2013; 121: 2725-2733
  • 13 Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 2018; 27: 1984-2009
  • 14 Tiong IS, Casolari DA, Moore S. et al. Apparent ‘JAK2-negative’ polycythaemia vera due to compound mutations in exon 14. Br J Haematol 2017; 178: 333-336
  • 15 Greenfield G, McPherson S, Mills K. et al. The ruxolitinib effect: understanding how molecular pathogenesis and epigenetic dysregulation impact therapeutic efficacy in myeloproliferative neoplasms. J Transl Med 2018; 16: 360
  • 16 Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 2017; 129: 667-679
  • 17 Nangalia J, Grinfeld J, Green AR. Pathogenesis of Myeloproliferative Disorders. Annu Rev Pathol 2016; 11: 101-126
  • 18 Tefferi A, Guglielmelli P, Larson DR. et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014; 124: 2507-2513
  • 19 Milosevic Feenstra JD, Nivarthi H, Gisslinger H. et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood 2016; 127: 325-332
  • 20 Rumi E, Barate C, Benevolo G. et al. Myeloproliferative and lymphoproliferative disorders: State of the art. Hematol Oncol 2020; 38: 121-128
  • 21 Harrison CN, Schaap N, Mesa RA. Management of myelofibrosis after ruxolitinib failure. Ann Hematol 2020; 99: 1177-1191
  • 22 Cervantes F, Dupriez B, Pereira A. et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009; 113: 2895-2901
  • 23 Passamonti F, Cervantes F, Vannucchi AM. et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010; 115: 1703-1708
  • 24 Gangat N, Caramazza D, Vaidya R. et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 2011; 29: 392-397
  • 25 Guglielmelli P, Lasho TL, Rotunno G. et al. MIPSS70: Mutation-Enhanced International Prognostic Score System for Transplantation-Age Patients With Primary Myelofibrosis. J Clin Oncol 2018; 36: 310-318
  • 26 Tefferi A, Guglielmelli P, Lasho TL. et al. MIPSS70+ Version 2.0: Mutation and Karyotype-Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J Clin Oncol 2018; 36: 1769-1770
  • 27 Tefferi A, Guglielmelli P, Nicolosi M. et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia 2018; 32: 1631-1642
  • 28 Barbui T, Tefferi A, Vannucchi AM. et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia 2018; 32: 1057-1069
  • 29 Vannucchi AM, Kiladjian JJ, Griesshammer M. et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med 2015; 372: 426-435
  • 30 DGHO. Deutsche Gesellschaft für Hämatologie und Onkologie (DGHO). Leitlinienportal Onkopedia. Verfügbar unter https://www.onkopedia.com/de/onkopedia/guidelines Zugegriffen: 02.09.2020
  • 31 Tiribelli M, Palandri F, Sant’Antonio E. et al. The role of allogeneic stem-cell transplant in myelofibrosis in the era of JAK inhibitors: a case-based review. Bone Marrow Transplant 2020; 55: 708-716
  • 32 McLornan DP, Yakoub-Agha I, Robin M. et al. State-of-the-art review: allogeneic stem cell transplantation for myelofibrosis in 2019. Haematologica 2019; 104: 659-668
  • 33 Shanavas M, Popat U, Michaelis LC. et al. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients with Myelofibrosis with Prior Exposure to Janus Kinase 1/2 Inhibitors. Biol Blood Marrow Transplant 2016; 22: 432-440
  • 34 Verstovsek S, Mesa RA, Gotlib J. et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, Phase III study in patients with myelofibrosis. Br J Haematol 2013; 161: 508-516
  • 35 Verstovsek S, Kantarjian H, Mesa RA. et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010; 363: 1117-1127
  • 36 Verstovsek S, Mesa RA, Gotlib J. et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366: 799-807
  • 37 Harrison C, Kiladjian JJ, Al-Ali HK. et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366: 787-798
  • 38 Al-Ali HK, Griesshammer M, Foltz L. et al. Primary analysis of JUMP, a phase 3b, expanded-access study evaluating the safety and efficacy of ruxolitinib in patients with myelofibrosis, including those with low platelet counts. Br J Haematol 2020; 189: 888-903
  • 39 Verstovsek S, Gotlib J, Mesa RA. et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol 2017; 10: 156
  • 40 Quintás-Cardama A, Vaddi K, Liu P. et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010; 115: 3109-3117
  • 41 Bose P, Verstovsek S. JAK Inhibition for the Treatment of Myelofibrosis: Limitations and Future Perspectives. Hemasphere 2020; 4: e424
  • 42 Rudolph J, Heine A, Quast T. et al. The JAK inhibitor ruxolitinib impairs dendritic cell migration via off-target inhibition of ROCK. Leukemia 2016; 30: 2119-2123
  • 43 Pemmaraju N, Kantarjian H, Nastoupil L. et al. Characteristics of patients with myeloproliferative neoplasms with lymphoma, with or without JAK inhibitor therapy. Blood 2019; 133: 2348-2351
  • 44 Porpaczy E, Tripolt S, Hoelbl-Kovacic A. et al. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 2018; 132: 694-706
  • 45 Rumi E, Zibellini S. JAK inhibitors and risk of B-cell lymphomas. Blood 2019; 133: 2251-2253
  • 46 Tefferi A, Pardanani A. Serious adverse events during ruxolitinib treatment discontinuation in patients with myelofibrosis. Mayo Clin Proc 2011; 86: 1188-1191
  • 47 Coltro G, Mannelli F, Guglielmelli P. et al. A life-threatening ruxolitinib discontinuation syndrome. Am J Hematol 2017; 92: 833-838
  • 48 Newberry KJ, Patel K, Masarova L. et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood 2017; 130: 1125-1131
  • 49 Palandri F, Breccia M, Bonifacio M. et al. Life after ruxolitinib: Reasons for discontinuation, impact of disease phase, and outcomes in 218 patients with myelofibrosis. Cancer 2020; 126: 1243-1252
  • 50 Pardanani A, Harrison C, Cortes JE. et al. Safety and Efficacy of Fedratinib in Patients With Primary or Secondary Myelofibrosis: A Randomized Clinical Trial. JAMA Oncol 2015; 1: 643-651
  • 51 Harrison CN, Schaap N, Vannucchi AM. et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol 2017; 4: e317-e324
  • 52 Mullally A, Hood J, Harrison C. et al. Fedratinib in myelofibrosis. Blood Adv 2020; 4: 1792-1800
  • 53 Talpaz M, Kiladjian JJ. Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia 2020; DOI: https://doi.org/10.1038/s41375-020-0954-2. (Online ahead of print)
  • 54 Zhang Q, Zhang Y, Diamond S. et al. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke’s encephalopathy. Drug Metab Dispos 2014; 42: 1656-1662
  • 55 Iurlo A, Cattaneo D, Bucelli C. Management of Myelofibrosis: from Diagnosis to New Target Therapies. Curr Treat Options Oncol 2020; 21: 46
  • 56 Singer JW, Al-Fayoumi S, Ma H. et al. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. J Exp Pharmacol 2016; 8: 11-19
  • 57 Mascarenhas J, Hoffman R, Talpaz M. et al. Pacritinib vs Best Available Therapy, Including Ruxolitinib, in Patients With Myelofibrosis: A Randomized Clinical Trial. JAMA Oncol 2018; 4: 652-659
  • 58 Asshoff M, Petzer V, Warr MR. et al. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood 2017; 129: 1823-1830
  • 59 Mesa RA, Kiladjian JJ, Catalano JV. et al. SIMPLIFY-1: A Phase III Randomized Trial of Momelotinib Versus Ruxolitinib in Janus Kinase Inhibitor-Naive Patients With Myelofibrosis. J Clin Oncol 2017; 35: 3844-3850
  • 60 Harrison CN, Vannucchi AM, Platzbecker U. et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol 2018; 5: e73-e81
  • 61 Daver N, Cortes J, Newberry K. et al. Ruxolitinib in combination with lenalidomide as therapy for patients with myelofibrosis. Haematologica 2015; 100: 1058-1063
  • 62 Martin PJ, Rizzo JD, Wingard JR. et al. First- and second-line systemic treatment of acute graft-versus-host disease: recommendations of the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2012; 18: 1150-1163
  • 63 Zeiser R, Blazar BR. Acute Graft-versus-Host Disease − Biologic Process, Prevention, and Therapy. N Engl J Med 2017; 377: 2167-2179
  • 64 Zhang L, Yu J, Wei W. Advance in Targeted Immunotherapy for Graft-Versus-Host Disease. Front Immunol 2018; 9: 1087
  • 65 Khoury HJ, Wang T, Hemmer MT. et al. Improved survival after acute graft-versus-host disease diagnosis in the modern era. Haematologica 2017; 102: 958-966
  • 66 Spoerl S, Mathew NR, Bscheider M. et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood 2014; 123: 3832-3842
  • 67 Jagasia M, Perales MA, Schroeder MA. et al. Ruxolitinib for the treatment of steroid-refractory acute GVHD (REACH1): a multicenter, open-label phase 2 trial. Blood 2020; 135: 1739-1749
  • 68 Przepiorka D, Luo L, Subramaniam S. et al. FDA Approval Summary: Ruxolitinib for Treatment of Steroid-Refractory Acute Graft-Versus-Host Disease. Oncologist 2020; 25: e328-e334
  • 69 Zeiser R, von Bubnoff N, Butler J. et al. Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease. N Engl J Med 2020; 382: 1800-1810
  • 70 Zeiser R, Socié G. The development of ruxolitinib for glucocorticoid-refractory acute graft-versus-host disease. Blood Adv 2020; 4: 3789-3794
  • 71 Modi B, Hernandez-Henderson M, Yang D. et al. Ruxolitinib as Salvage Therapy for Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2019; 25: 265-269
  • 72 Jagasia M, Zeiser R, Arbushites M. et al. Ruxolitinib for the treatment of patients with steroid-refractory GVHD: an introduction to the REACH trials. Immunotherapy 2018; 10: 391-402
  • 73 Khoury HJ, Langston AA, Kota VK. et al. Ruxolitinib: a steroid sparing agent in chronic graft-versus-host disease. Bone Marrow Transplant 2018; 53: 826-831
  • 74 Abedin S, McKenna E, Chhabra S. et al. Efficacy, Toxicity, and Infectious Complications in Ruxolitinib-Treated Patients with Corticosteroid-Refractory Graft-versus-Host Disease after Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 25: 1689-1694
  • 75 Mannina D, Kröger N. Janus Kinase Inhibition for Graft-Versus-Host Disease: Current Status and Future Prospects. Drugs 2019; 79: 1499-1509