Tierarztl Prax Ausg K Kleintiere Heimtiere 2020; 48(06): 410-419
DOI: 10.1055/a-1274-9146
Originalartikel

Bestimmung von Sexualsteroiden in abgestoßener Haut der Gila-Krustenechse (Heloderma suspectum)

Determination of sex steroids in shed skin of the beaded lizard Heloderma suspectum (“Gila Monster”)
Gerhard Schuler
Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere mit Tierärztlicher Ambulanz, Justus-Liebig-Universität Gießen
,
Sabine Feller
,
Hans-Joachim Schwandt
› Author Affiliations

Zusammenfassung

Gegenstand und Ziel Die Messung in Hautanhangsgebilden wie Haaren oder Klauen bei Säugern oder in Federn bei Vögeln wird zur nicht invasiven Bestimmung von Steroidhormonen angewendet. Ziel dieser Arbeit war, in einer Pilotstudie an der Gila-Krustenechse zu testen, ob die Messung von Sexualsteroiden in abgeschilferter Haut bei Reptilien zur Erfassung der endokrinen Gonadenfunktion bzw. zur Geschlechtsbestimmung eingesetzt werden kann.

Material und Methoden Für die Untersuchungen standen abgestoßene Häute von 11 weiblichen und 7 männlichen adulten, geschlechtsreifen Tieren zur Verfügung. Große Hautstücke wurden zunächst mit einer Schere zerkleinert, unter flüssigem Stickstoff fein zermörsert und die Proben schließlich mit organischen Lösungsmitteln extrahiert. Die folgenden Parameter wurden in den getrockneten und rückgelösten Extrakten radioimmunologisch bestimmt: Progesteron (P4), Estradiol-17β (E2), Testosteron (T), freie Gesamtöstrogene (fGÖ) sowie freie plus konjugierte Gesamtöstrogene (fkGÖ).

Ergebnisse Für P4 (p = 0,0052) und E2 (p = 0,0079) wurden signifikante Geschlechtsunterschiede mit höheren Konzentrationen bei weiblichen im Vergleich zu männlichen Tieren gefunden. Unerwarteterweise ergaben sich bei weiblichen Tieren auch signifikant (p = 0,0232) höhere T-Messwerte als bei männlichen, wobei die Konzentrationen insgesamt nur geringfügig über der Nachweisgrenze lagen. Im Vergleich zu fGÖ waren die Konzentrationen an fkGÖ nur geringgradig höher und zwischen den beiden Geschlechtern bestanden keine signifikanten Unterschiede.

Schlussfolgerung und klinische Relevanz Auch wenn die in dieser Pilotstudie angewendeten Methoden aufgrund von Überlappungen zwischen den Geschlechtern weder allein noch in Kombination eine zuverlässige Geschlechtsbestimmung bei einzelnen Tieren erlaubten, könnte die Messung von Sexualsteroiden in abgestoßenen Häuten grundsätzlich eine nützliche Methode für die nicht invasive Geschlechtsbestimmung oder die Erfassung der endokrinen Gonadenfunktion bei bestimmten Reptilienarten sein.

Abstract

Objective Measurement of steroid hormones in skin appendages such as mammalian hair or claws and in avian feathers represents a recognized non-invasive method for the determination of these parameters. The aim of this pilot study in the Gila Monster was to investigate whether the measurement of sex steroids in shed skin may be employed for the monitoring of endocrine gonadal function or sex determination in reptiles.

Material and methods Shed skins were available from 11 female and 7 male adult and sexually mature animals. Large pieces of skin were initially cut into smaller pieces with scissors. The resultant dermal fragments were finely ground under liquid nitrogen and finally extracted with organic solvents. The following parameters were determined radioimmunologically in the dried and re-dissolved extracts: progesterone (P4), estradiol-17β (E2), testosterone (T), free total estrogens (fGÖ) and free plus conjugated total estrogens (fkGÖ).

Results For P4 (p = 0.0052) and E2 (p = 0.0079) significant sex differences were found with higher concentrations in females compared to males. Unexpectedly, the measured values for T were also significantly higher in females (p = 0.0232) than in males, with the concentrations overall only slightly above the detection limit. Compared to fGÖ, the concentrations of fkGÖ were only slightly higher, with no significant differences between both sexes.

Conclusion and clinical relevance In this pilot study, the methods employed did not allow for reliable sex determination in individual animals, neither alone nor in combination, due to an overlap between the sexes. In principle, however, the measurement of sex steroids in shed skins could represent a useful method for non-invasive sex determination or endocrine gonadal function assessment in certain reptile species.



Publication History

Received: 24 July 2020

Accepted: 23 September 2020

Article published online:
04 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Rovatsos M, Johnson Pokorna M, Altmanova M. et al. Sexing of Komodo dragons, Varanus komodoensis. Gazella 2015; 42: 92-107
  • 2 Rovatsos M, Kratochvíl L. Molecular sexing applicable in 4000 species of lizards and snakes? From dream to real possibility. Methods Ecol Evol 2017; 8: 902-906 doi:10.1111/2041–210X.12714
  • 3 Rovatsos M, Rehák I, Velenský P. et al. Shared ancient sex chromosomes in varanids, beaded lizards, and alligator lizards. Mol Biol Evol 2019; 36: 1113-1120 doi:10.1093/molbev/msz024
  • 4 Modi WS, Crews D. Sex chromosomes and sex determination in reptiles. Curr Opin Genet Dev 2005; 15: 660-665 doi:10.1016/j.gde.2005.09.009
  • 5 Graves JAM. Weird animals, sex, and genome evolution. Annu Rev Anim Biosci 2018; 6: 1-22 doi:10.1146/annurev-animal-030117–014813
  • 6 Pezaro N, Doody JS, Thompson MB. The ecology and evolution of temperature-dependent reaction norms for sex determination in reptiles: a mechanistic conceptual model. Biol Rev Camb Philos Soc 2017; 92: 1348-1364 doi:10.1111/brv.12285
  • 7 Pokorná MJ, Rovatsos M, Kratochvíl L. Sex chromosomes and karyotype of the (nearly) mythical creature, the Gila Monster, Heloderma suspectum (Squamata: Helodermatidae). PLoS One 2014; 9 (08) e104716 doi:10.1371/journal.pone.0104716 PMCID: PMC4131918
  • 8 Claus R, Hoffmann B. Oestrogens, compared to other steroids of testicular origin, in blood plasma of boars. Acta Endocrinol (Copenh) 1980; 94: 404-411 doi:10.1530/acta.0.0940404
  • 9 Hoffmann B, Landeck A. Testicular endocrine function, seasonality and semen quality of the stallion. Anim Reprod Sci 1999; 57: 89-98 doi:10.1016/s0378–4320(99)00050–0
  • 10 Hammes SR, Levin ER. Impact of estrogens in males and androgens in females. J Clin Invest 2019; 129: 1818-1826 doi:10.1172/JCI125755
  • 11 Wierman ME. Sex steroid effects at target tissues: mechanisms of action. Adv Physiol Educ 2007; 31: 26-33 doi:10.1152/advan.​00086.2006
  • 12 Browning HC. The evolutionary history of the corpus luteum. Biol Reprod 1973; 8: 128-157 doi:10.1093/biolreprod/8.2.128
  • 13 Callard IP, Etheridge K, Giannoukos G. et al. The role of steroids in reproduction in female elasmobranchs and reptiles. J Steroid Biochem Mol Biol 1991; 406: 571-575 doi:10.1016/0960–0760(91)90278-d
  • 14 Custodia-Lora N, Callard IP. Progesterone and progesterone receptors in reptiles. Gen Comp Endocrinol 2002; 127: 1-7 doi:10.1016/s0016–6480(02)00030–8
  • 15 Saint Girons H, Bradshaw SD, Bradshaw FJ. Sexual activity and plasma levels of sex steroids in the aspic viper Vipera aspis L. (Reptilia, Viperidae). Gen Comp Endocrinol 1993; 91: 287-297 doi:10.1006/gcen.1993.1129
  • 16 Lind CM, Husak JF, Eikenaar C. et al. The relationship between plasma steroid hormone concentrations and the reproductive cycle in the Northern Pacific rattlesnake, Crotalus oreganus. Gen Comp Endocrinol 2010; 166: 590-599 doi:10.1016/j.ygcen.2010.01.026
  • 17 Palme R, Rettenbacher S, Touma C. et al. Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann N Y Acad Sci 2005; 1040: 162-171 doi:10.1196/annals.1327.021
  • 18 Schwarzenberger F, Rietschel W, Vahala J. et al. Fecal progesterone, estrogen, and androgen metabolites for noninvasive monitoring of reproductive function in the female Indian rhinoceros, Rhinoceros unicornis. Gen Comp Endocrinol 2000; 119: 300-307 doi:10.1006/gcen.2000.7523
  • 19 Hoffmann B, Goes de Pinho T, Schuler G. Determination of free and conjugated oestrogens in peripheral blood plasma, feces and urine of cattle throughout pregnancy. Exp Clin Endocrinol Diabetes 1997; 105: 296-303 doi:10.1055/s-0029–1211768
  • 20 Hoffmann B, Günzler O, Hamburger R. et al. Milk progesterone as a parameter for fertility control in cattle; methodological approaches and present status of application in Germany. Br Vet J 1976; 132: 469-476 doi:10.1016/s0007–1935(17)34584–0
  • 21 Wood P. Salivary steroid assays – research or routine?. Ann Clin Biochem 2009; 46: 183-196 doi:10.1258/acb.2008.008208
  • 22 Cattet M, Stenhouse GB, Janz DM. et al. The quantification of reproductive hormones in the hair of captive adult brown bears and their application as indicators of sex and reproductive state. Conserv Physiol 2017; 5 (01) 0 doi:10.1093/conphys/cox032
  • 23 Dong Z, Wang C, Zhang J. et al. A UHPLC-MS/MS method for profiling multifunctional steroids in human hair. Anal Bioanal Chem 2017; 409: 4751-4769 doi:10.1007/s00216–017–0419–2
  • 24 Romero LM, Fairhurst GD. Measuring corticosterone in feathers: Strengths, limitations, and suggestions for the future. Comp Biochem Physiol A Mol Integr Physiol 2016; 202: 112-122 doi:10.1016/j.cbpa.2016.05.002
  • 25 Will A, Wynne-Edwards K, Zhou R. et al. Of 11 candidate steroids, corticosterone concentration standardized for mass is the most reliable steroid biomarker of nutritional stress across different feather types. Ecol Evol 2019; 9: 11930-11943 doi:10.1002/ece3.5701
  • 26 Baxter-Gilbert JH, Riley JL, Mastromonaco GF. et al. A novel technique to measure chronic levels of corticosterone in turtles living around a major roadway. Conserv Physiol 2014; 2 (01) 0 doi:10.1093/conphys/cou036
  • 27 Fusi J, Comin A, Faustini M. et al. Perinatal concentrations of 17β-estradiol and testosterone in the toe claws of female and male dogs from birth until 60 days of age. Anim Reprod Sci 2020; 214: 106313 doi:10.1016/j.anireprosci.2020.106313
  • 28 Palme R. Measuring fecal steroids: guidelines for practical application. Ann N Y Acad Sci 2005; 1046: 75-80 doi:10.1196/annals.1343.007
  • 29 Schwandt H-J. Die Gila-Krustenechse Heloderma suspectum. Biologie, Haltung und Zucht. Frankfurter Beiträge zur Naturkunde Band 83. Frankfurt am Main: Edition Chimaira; 2019
  • 30 Berkvens CN, Hyatt C, Gilman C. et al. Validation of a shed skin corticosterone enzyme immunoassay in the African House Snake (Lamprophis fuliginosus) and its evaluation in the Eastern Massasauga Rattlesnake (Sistrurus catenatus catenatus). Gen Comp Endocrinol 2013; 194: 1-9 doi:10.1016/j.ygcen.2013.08.011
  • 31 Carbajal A, Fernandez-Bellon H, Tallo-Parra O. et al. Corticosterone determination in shed skin from lizards and snakes: A potential tool for assessing chronic stress. The proceedings of the 6th International Conference on Diseases of Zoo and Wild Animals; Warsaw, Poland: 2014: 114
  • 32 Carbajal A, Tallo-Parra O, Monclús L. et al. Corticosterone measurement in Komodo dragon shed skin. Herpetol J 2018; 28: 110-116
  • 33 Hoffmann B, Kyrein HJ, Ender ML. An efficient procedure for the determination of progesterone by radioimmunoassay applied to bovine peripheral plasma. Horm Res 1973; 4: 302-310
  • 34 Hoffmann B, Höveler R, Hasan SH. et al. Ovarian and pituitary function in dogs after hysterectomy. J Reprod Fertil 1992; 96: 837-845
  • 35 Röcken FE, Nothelfer HB, Hoffmann B. Testosteronkonzentrationen im peripheren Plasma sowie morphologische Hodenbefunde von Rüden mit einer Perinealhernie. Kleintierprax 1995; 40: 261-267
  • 36 Schuler G, Hoffmann B. Determination of conjugated oestrogens in maternal blood plasma and urine for pregnancy diagnosis and monitoring of fetal well-being in the mare. Pferdeheilk 1999; 15: 627-629
  • 37 Hoffmann B. Bestimmung von Steroidhormonen beim weiblichen Rind: Entwicklung von Messverfahren und physiologische Daten. Fortschritte der Veterinärmedizin, Heft 26. Berlin, Hamburg: Parey; 1977
  • 38 Russell FE, Bogert CM. Gila monster: its biology, venom and bite – a review. Toxicon 1981; 19: 341-359 doi:10.1016/0041–0101(81)90040–4
  • 39 Yap MKK, Misuan N. Exendin-4 from Heloderma suspectum venom: From discovery to its latest application as type II diabetes combatant. Basic Clin Pharmacol Toxicol 2019; 124: 513-527 doi:10.1111/bcpt.13169
  • 40 Bonnet X, Naulleau G, Bradshaw D. et al. Changes in plasma progesterone in relation to vitellogenesis and gestation in the viviparous snake Vipera aspis. Gen Comp Endocrinol 2001; 121: 84-94 doi:10.1006/gcen.2000.7574
  • 41 Romero LM. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 2002; 128: 1-24 doi:10.1016/s0016–6480(02)00064–3
  • 42 Moore IT, Jessop TS. Stress, reproduction, and adrenocortical modulation in amphibians and reptiles. Horm Behav 2003; 43: 39-47 doi:10.1016/s0018–506x(02)00038–7
  • 43 Labrie F, Luu-The V, Labrie C. et al. Intracrinology and the skin. Horm Res 2000; 54: 218-229 doi:10.1159/000053264
  • 44 Nikolakis G, Stratakis CA, Kanaki T. et al. Skin steroidogenesis in health and disease. Rev Endocr Metab Disord 2016; 17: 247-258 doi:10.1007/s11154–016–9390-z
  • 45 Maderson PFA, Rabinowitz T, Tandler B. et al. Ultrastructural contributions to an understanding of the cellular mechanisms involved in lizard skin shedding with comments on the function and evolution of a unique Lepidosaurian phenomenon. J Morphol 1998; 236: 1-24 doi:10.1002/(SICI)1097–4687(199804)236:1<1::AID-JMOR1>3.0.CO;2-B
  • 46 Rutland CS, Cigler P, Kubale Dvojmoč V. Reptilian skin and its special histological structures. In: Rutland CS, Kubale Dvojmoč V, eds. Veterinary Anatomy and Physiology. InTechOpen. 2019: 1-21 https://doi.org/10.5772/intechopen.84212
  • 47 Chiu KW, Lam KY. Plasma T3 and T4 levels in a snake, Elaphe taeniura. Comp Biochem Physiology 1994; 107A: 107-112 doi:10.1016/0300–9629(94)90281-X
  • 48 Chiu KW, Leung MS, Maderson PF. Thyroid and skin-shedding in the rat snake (Ptyas korros). J Exp Zool 1983; 225: 407-410 doi:10.1002/jez.1402250308
  • 49 Whittier JM, Mason RT, Crews D. Plasma steroid hormone levels of female red-sided garter snakes, Thamnophis sirtalis parietalis: relationship to mating and gestation. Gen Comp Endocrinol 1987; 67: 33-43 doi:10.1016/0016–6480(87)90202–4