Klinische Neurophysiologie 2020; 51(04): 214-223
DOI: 10.1055/a-1272-9435
Übersicht

Funktionserholung nach Schlaganfall und die therapeutische Rolle der nicht-invasiven Hirnstimulation

Functional Recovery after Stroke and the Therapeutic Relevance of Non-invasive Brain Stimulation
Caroline Tscherpel
1   Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
2   Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich
,
Christian Grefkes
1   Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
2   Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich
› Author Affiliations

Zusammenfassung

Im Bereich der non-invasiven Hirnstimulation stellen die transkranielle Magnetstimulation (engl. transcranial magnetic stimulation, TMS) sowie die transkranielle Gleichstromstimulation (engl. transcranial direct current stimulation, tDCS) bis heute die wichtigsten Techniken zur Modulation kortikaler Erregbarkeit dar. Beide Verfahren induzieren Nacheffekte, welche die Zeit der reinen Stimulation überdauern, und ebnen damit den Weg für ihren therapeutischen Einsatz beim Schlaganfall. In diesem Übersichtsartikel diskutieren wir die aktuelle Datenlage TMS- und tDCS-vermittelter Therapien für die häufigsten schlaganfallbedingten Defizite wie Hemiparese, Aphasie und Neglect. Darüber hinaus adressieren wir mögliche Einschränkungen der gegenwärtigen Ansätze und zeigen Ansatzpunkte auf, um Neuromodulation nach Schlaganfall effektiver zu gestalten und damit das Outcome der Patienten zu verbessern.

Abstract

Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) currently represent the most important techniques for modulating cortical excitability. Both approaches induce after-effects that outlast the time of stimulation, and thus form the foundation for their therapeutic use in stroke rehabilitation. The purpose of this review is to discuss current data on non-invasive stimulation therapies for the most common stroke-related deficits, i. e., hemiparesis, aphasia and neglect. In addition, we address current limitations and finally suggest strategies to potentially increase the effectiveness of neuromodulation after stroke in order to improve patients’ outcome.



Publication History

Article published online:
29 October 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: Making waves. Ann Neurol 2006; 59: 735-742
  • 2 Cramer SC. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol 2008; 63: 272-287
  • 3 Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 2009; 7: 97
  • 4 Nudo RJ. Recovery after brain injury: mechanisms and principles. Front Hum Neurosci 2013; 7: 887
  • 5 Rehme AK, Fink GR, Cramon von DY. , u. a. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex 2011; 21: 756-768
  • 6 Heiss WD, Thiel A. A proposed regional hierarchy in recovery of post-stroke aphasia. Brain and Language 2006; 98: 118-123
  • 7 Corbetta M, Kincade MJ, Lewis C. , u. a. Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 2005; 8: 1603-1610
  • 8 Stockert A, Wawrzyniak M, Klingbeil J. , u. a. Dynamics of language reorganization after left temporo-parietal and frontal stroke. Brain 2020; 143: 844-861
  • 9 Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. The Lancet 2011; 377: 1693-1702
  • 10 Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restorative Neurology and Neuroscience 2004; 22: 281-299
  • 11 Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. Current Opinion in Neurology 2013; 26: 609-616
  • 12 Bernhardt J, Hayward KS, Kwakkel G. , u. a. Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabilitation and Neural Repair 2017; 31: 793-799
  • 13 Prabhakaran S, Zarahn E, Riley C. , u. a. Inter-individual Variability in the Capacity for Motor Recovery After Ischemic Stroke. Neurorehabilitation and Neural Repair 2007; 22: 64-71
  • 14 Vliet R, Selles RW, Andrinopoulou ER. , u. a. Predicting upper limb motor impairment recovery after stroke: a mixture model. Ann Neurol 2020; 25679-25623
  • 15 Nijboer TCW, Kollen BJ, Kwakkel G. Time course of visuospatial neglect early after stroke: a longitudinal cohort study. Cortex 2013; 49: 2021-2027
  • 16 Lazar RM, Speizer AE, Festa JR. , u. a. Variability in language recovery after first-time stroke. J Neurol Neurosurg Psychiatr 2008; 79: 530-534
  • 17 Dobkin BH, Carmichael ST. The Specific Requirements of Neural Repair Trials for Stroke. Neurorehabilitation and Neural Repair 2015; 30: 470-478
  • 18 Krakauer JW, Carmichael ST, Corbett D. u. a. Getting Neurorehabilitation Right. Neurorehabilitation and Neural Repair 2012; 26: 923-931
  • 19 Biernaskie J. Efficacy of Rehabilitative Experience Declines with Time after Focal Ischemic Brain Injury. J Neurosci 2004; 24: 1245-1254
  • 20 Clarkson AN, Overman JJ, Zhong S. , u. a. AMPA Receptor-Induced Local Brain-Derived Neurotrophic Factor Signaling Mediates Motor Recovery after Stroke. J Neurosci 2011; 31: 3766-3775
  • 21 Duncan PW, Goldstein LB, Matchar D. , u. a. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 1992; 23: 1084-1089
  • 22 Stinear CM, Barber PA, Petoe M. , u. a. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain 2012; 135: 2527-2535
  • 23 Nakayama H, Jørgensen HS, Raaschou HO. , u. a. The influence of age on stroke outcome. The Copenhagen Stroke Study. Stroke 1994; 25: 808-813
  • 24 Feng W, Wang J, Chhatbar PY. , u. a. Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes. Ann Neurol 2015; 78: 860-870
  • 25 Goldstein LB, Samsa GP, Matchar DB. , u. a. Charlson Index Comorbidity Adjustment for Ischemic Stroke Outcome Studies. Stroke 2004; 35: 1941-1945
  • 26 Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function. The Lancet Neurology 2014; 13: 206-216
  • 27 Heiss WD, Kessler J, Thiel A. , u. a. Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann Neurol 1999; 45: 430-438
  • 28 Léger A, Démonet J-F, Ruff S. , u. a. Neural Substrates of Spoken Language Rehabilitation in an Aphasic Patient: An fMRI Study. NeuroImage 2002; 17: 174-183
  • 29 Belin P, Van Eeckhout P, Zilbovicius M. , u. a. Recovery from nonfluent aphasia after melodic intonation therapy: a PET study. Neurology 1996; 47: 1504-1511
  • 30 Rosen HJ, Petersen SE, Linenweber MR. , u. a. Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology 2000; 55: 1883-1894
  • 31 Auriat AM, Neva JL, Peters S. , u. a. A Review of Transcranial Magnetic Stimulation and Multimodal Neuroimaging to Characterize Post-Stroke Neuroplasticity. Front Neurol 2015; 6: 226
  • 32 Xu J, Branscheidt M, Schambra H. , u. a. Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation. Ann Neurol 2019; 1-36
  • 33 Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage 2003; 19: 1273-1302
  • 34 Grefkes C, Nowak DA, Eickhoff SB. , u. a. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 2008; 63: 236-246
  • 35 Koch G, Oliveri M, Cheeran B. u. a. Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain 2008; 131: 3147-3155
  • 36 Kinsbourne M. Hemi-neglect and hemisphere rivalry. Adv Neurol 1977; 18: 41-49
  • 37 Geranmayeh F, Brownsett SLE, Wise RJS. Task-induced brain activity in aphasic stroke patients: what is driving recovery?. Brain 2014; 137: 2632-2648
  • 38 Lefaucheur J-P, Aleman A, Baeken C. , u. a. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clinical Neurophysiology 2020: 474-528
  • 39 Rossini PM, Burke D, Chen R. , u. a. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126: 1071-1107
  • 40 Huang Y-Z, Edwards MJ, Rounis E. , u. a. Theta Burst Stimulation of the Human Motor Cortex. Neuron 2005; 45: 201-206
  • 41 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol (Lond) 2000; 527: 633-639
  • 42 Nitsche MA, Paulus W. Transcranial direct current stimulation−update 2011. Restorative Neurology and Neuroscience 2011; 29: 463-492
  • 43 Nitsche MA, Fricke K, Henschke U. , u. a. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol (Lond) 2003; 553: 293-301
  • 44 Bestmann S, Baudewig J, Siebner HR, u. a. BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. NeuroImage 2005;
  • 45 Nettekoven C, Volz LJ, Kutscha M. , u. a. Dose-Dependent Effects of Theta Burst rTMS on Cortical Excitability and Resting-State Connectivity of the Human Motor System. Journal of Neuroscience 2014; 34: 6849-6859
  • 46 Polanía R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 2011; 33: 2499-2508
  • 47 Polanía R, Nitsche MA, Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 2010; 32: 1236-1249
  • 48 Keeser D, Meindl T, Bor J. , u. a. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. Journal of Neuroscience 2011; 31: 15284-15293
  • 49 Liew S-L, Santarnecchi E, Buch ER. , u. a. Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci 2014; 8: 265
  • 50 Rothkegel H, Sommer M, Paulus W. Breaks during 5 Hz rTMS are essential for facilitatory after effects. Clin Neurophysiol 2010; 121: 426-430
  • 51 Hamada M, Murase N, Hasan A. , u. a. The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 2013; 23: 1593-1605
  • 52 Cheeran B, Talelli P, Mori F. , u. a. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. The Journal of Physiology 2008; 586: 5717-5725
  • 53 Batsikadze G, Moliadze V, Paulus W. , u. a. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. The Journal of Physiology 2013; 591: 1987-2000
  • 54 Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 1982; 2: 32-48
  • 55 Müller-Dahlhaus F, Ziemann U. Metaplasticity in Human Cortex. The Neuroscientist 2015; 21: 185-202
  • 56 Grefkes C, Ward NS. Cortical Reorganization After Stroke: How Much and How Functional?. The Neuroscientist 2014; 20: 56-70
  • 57 Hummel FC, Celnik P, Pascual-Leone A. , u. a. Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul 2008; 1: 370-382
  • 58 Lefaucheur J-P, André-Obadia N, Antal A. , u. a. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology 2014; 125: 2150-2206
  • 59 Lefaucheur J-P, Antal A, Ayache SS. , u. a. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology 2017; 128: 56-92
  • 60 Volz LJ, Rehme AK, Michely J. , u. a. Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke. Cerebral Cortex 2016; bhw034
  • 61 Guan Y-Z, Li J, Zhang X-W. , u. a. Effectiveness of repetitive transcranial magnetic stimulation (rTMS) after acute stroke: A one-year longitudinal randomized trial. CNS Neurosci Ther 2017; 23: 940-946
  • 62 Hosomi K, Morris S, Sakamoto T. , u. a. Daily Repetitive Transcranial Magnetic Stimulation for Poststroke Upper Limb Paresis in the Subacute Period. J Stroke Cerebrovasc Dis 2016; 25: 1655-1664
  • 63 Du J, Tian L, Liu W. , u. a. Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: a randomized controlled trial. Eur J Neurol 2016; 23: 1666-1672
  • 64 Li J, Meng X-M, Li R-Y. , u. a. Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction. Neural Regen Res 2016; 11: 1584-1587
  • 65 Matsuura A, Onoda K, Oguro H. , u. a. Magnetic stimulation and movement-related cortical activity for acute stroke with hemiparesis. Eur J Neurol 2015; 22: 1526-1532
  • 66 Lüdemann-Podubecká J, Bösl K, Theilig S. , u. a. The Effectiveness of 1Hz rTMS Over the Primary Motor Area of the Unaffected Hemisphere to Improve Hand Function After Stroke Depends on Hemispheric Dominance. Brain Stimul 2015; 8: 823-830
  • 67 Meng Z-Y, Song W-Q. Low frequency repetitive transcranial magnetic stimulation improves motor dysfunction after cerebral infarction. Neural Regen Res 2017; 12: 610-613
  • 68 Ameli M, Grefkes C, Kemper F. , u. a. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann Neurol 2009; 66: 298-309
  • 69 Long H, Wang H, Zhao C. , u. a. Effects of combining high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. Restorative Neurology and Neuroscience 2018; 36: 21-30
  • 70 Duque J, Hummel F, Celnik P. , u. a. Transcallosal inhibition in chronic subcortical stroke. NeuroImage 2005; 28: 940-946
  • 71 Nowak DA, Grefkes C, Dafotakis M. , u. a. Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Contralesional Primary Motor Cortex on Movement Kinematics and Neural Activity in Subcortical Stroke. Archives of Neurology 2008; 65: 741-747
  • 72 Grefkes C, Nowak DA, Wang LE. , u. a. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling – ScienceDirect. NeuroImage 2010; 2013: 233-242 Im Internet: http://www.sciencedirect.com/science/article/pii/S1053811909013172
  • 73 Fregni F, Boggio PS, Valle AC. , u. a. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 2006; 37: 2115-2122
  • 74 Avenanti A, Coccia M, Ladavas E. , u. a. Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: A randomized trial. Neurology 2012; 78: 256-264
  • 75 Emara TH, Moustafa RR, ElNahas NM. , u. a. Repetitive transcranial magnetic stimulation at 1 Hz and 5 Hz produces sustained improvement in motor function and disability after ischaemic stroke. Eur J Neurol 2010; 17: 1203-1209
  • 76 Harvey RL, Edwards D, Dunning K. , u. a. Randomized Sham-Controlled Trial of Navigated Repetitive Transcranial Magnetic Stimulation for Motor Recovery in Stroke. Stroke 2018; 49: 2138-2146
  • 77 Diekhoff-Krebs S, Pool E-M, Sarfeld A-S. , u. a. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients. NeuroImage: Clinical 2017; 15: 559-571
  • 78 Hao Z, Wang D, Zeng Y. , u. a. Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database of Systematic Reviews 2013; 78: 256-256
  • 79 Sattler V, Acket B, Raposo N. , u. a. Anodal tDCS Combined With Radial Nerve Stimulation Promotes Hand Motor Recovery in the Acute Phase After Ischemic Stroke. Neurorehabilitation and Neural Repair 2014; 29: 743-754
  • 80 Khedr EM, Shawky OA, El-Hammady DH. , u. a. Effect of Anodal Versus Cathodal Transcranial Direct Current Stimulation on Stroke Rehabilitation. Neurorehabilitation and Neural Repair 2013; 27: 592-601
  • 81 Chang MC, Kim DY, Park DH. Enhancement of Cortical Excitability and Lower Limb Motor Function in Patients With Stroke by Transcranial Direct Current Stimulation. Brain Stimul 2015; 8: 561-566
  • 82 Hesse S, Waldner A, Mehrholz J. , u. a. Combined Transcranial Direct Current Stimulation and Robot-Assisted Arm Training in Subacute Stroke Patients. Neurorehabilitation and Neural Repair 2011; 25: 838-846
  • 83 Rossi C, Sallustio F, Di Legge S. , u. a. Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. Eur J Neurol 2013; 20: 202-204
  • 84 Allman C, Amadi U, Winkler AM. , u. a. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Science Translational Medicine 2016; 8: 330re1
  • 85 Geroin C, Picelli A, Munari D. , u. a. Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin Rehabil 2011; 25: 537-548
  • 86 Viana RT, Laurentino GEC, Souza RJP. , u. a. Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. NRE 2014; 34: 437-446
  • 87 Elsner B, Kugler J, Pohl M. , u. a. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database of Systematic Reviews 2016; 96: S79-S190
  • 88 Naeser MA, Martin PI, Baker EH. , u. a. Overt propositional speech in chronic nonfluent aphasia studied with the dynamic susceptibility contrast fMRI method. NeuroImage 2004; 22: 29-41
  • 89 Bhogal SK, Teasell R, Speechley M. Intensity of Aphasia Therapy, Impact on Recovery. Stroke 2003; 34: 987-993
  • 90 Thiel A, Hartmann A, Rubi-Fessen I. , u. a. Effects of Noninvasive Brain Stimulation on Language Networks and Recovery in Early Poststroke Aphasia. Stroke 2013; 44: 2240-2246
  • 91 Waldowski K, Seniów J, Leśniak M. , u. a. Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation on Naming Abilities in Early-Stroke Aphasic Patients: A Prospective, Randomized, Double-Blind Sham-Controlled Study. The Scientific World Journal 2012; 2012: 1-8
  • 92 Heiss W-D, Hartmann A, Rubi-Fessen I. , u. a. Noninvasive Brain Stimulation for Treatment of Right- and Left-Handed Poststroke Aphasics. Cerebrovasc Dis 2013; 36: 363-372
  • 93 Seniów J, Waldowski K, Leśniak M. , u. a. Transcranial Magnetic Stimulation Combined with Speech and Language Training in Early Aphasia Rehabilitation: A Randomized Double-Blind Controlled Pilot Study. Topics in Stroke Rehabilitation 2015; 20: 250-261
  • 94 Rubi-Fessen I, Hartmann A, Huber W. , u. a. Add-on Effects of Repetitive Transcranial Magnetic Stimulation on Subacute Aphasia Therapy: Enhanced Improvement of Functional Communication and Basic Linguistic Skills. A Randomized Controlled Study. Arch Phys Med Rehabil 2015; 96: e2
  • 95 Yoon TH, Han SJ, Yoon TS. , u. a. Therapeutic effect of repetitive magnetic stimulation combined with speech and language therapy in post-stroke non-fluent aphasia. NRE 2015; 36: 107-114
  • 96 Hu X-Y, Zhang T, Rajah GB. , u. a. Effects of different frequencies of repetitive transcranial magnetic stimulation in stroke patients with non-fluent aphasia: a randomized, sham-controlled study. Neurological Research 2018; 1-7
  • 97 Tsai P-Y, Wang C-P, Ko JS. , u. a. The Persistent and Broadly Modulating Effect of Inhibitory rTMS in Nonfluent Aphasic Patients. Neurorehabilitation and Neural Repair 2014; 28: 779-787
  • 98 Wang C-P, Hsieh C-Y, Tsai P-Y. , u. a. Efficacy of Synchronous Verbal Training During Repetitive Transcranial Magnetic Stimulation in Patients With Chronic Aphasia. Stroke 2014; 45: 3656-3662
  • 99 Elsner B, Kugler J, Pohl M. , u. a. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. Cochrane Database of Systematic Reviews 2019; 41: 1229-112
  • 100 Biou E, Cassoudesalle H, Cogné M. , u. a. Transcranial direct current stimulation in post-stroke aphasia rehabilitation: A systematic review. Annals of Physical and Rehabilitation Medicine 2019; 62: 104-121
  • 101 de Aguiar V, Paolazzi CL, Miceli G. tDCS in post-stroke aphasia: the role of stimulation parameters, behavioral treatment and patient characteristics. Cortex 2015; 63: 296-316
  • 102 You DS, Kim DY, Chun MH. , u. a. Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients. Brain and Language 2011; 119: 1-5
  • 103 Spielmann K, van de Sandt-Koenderman WME, Heijenbrok-Kal MH. , u. a. Transcranial Direct Current Stimulation Does Not Improve Language Outcome in Subacute Poststroke Aphasia. Stroke 2018; 49: 1018-1020
  • 104 Polanowska KE, Leśniak MM, Seniów JB. , u. a. Anodal transcranial direct current stimulation in early rehabilitation of patients with post-stroke non-fluent aphasia: a randomized, double-blind, sham-controlled pilot study. Restorative Neurology and Neuroscience 2013; 31: 761-771
  • 105 Fridriksson J, Rorden C, Elm J. , u. a. Transcranial Direct Current Stimulation vs Sham Stimulation to Treat Aphasia After Stroke. JAMA Neurol 2018; 75: 1470-1477
  • 106 Fridriksson J, Richardson JD, Baker JM. , u. a. Transcranial Direct Current Stimulation Improves Naming Reaction Time in Fluent Aphasia. Stroke 2011; 42: 819-821
  • 107 Baker JM, Rorden C, Fridriksson J. Using Transcranial Direct-Current Stimulation to Treat Stroke Patients With Aphasia. Stroke 2010; 41: 1229-1236
  • 108 Fiori V, Coccia M, Marinelli CV. , u. a. Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. Journal of Cognitive Neuroscience 2011; 23: 2309-2323
  • 109 Campana S, Caltagirone C, Marangolo P. Combining Voxel-based Lesion-symptom Mapping (VLSM) With A-tDCS Language Treatment: Predicting Outcome of Recovery in Nonfluent Chronic Aphasia. Brain Stimul 2015; 8: 769-776
  • 110 Yi YG, Chun MH, Do KH. , u. a. The Effect of Transcranial Direct Current Stimulation on Neglect Syndrome in Stroke Patients. Ann Rehabil Med 2016; 40: 223-227
  • 111 Làdavas E, Giulietti S, Avenanti A. , u. a. a-tDCS on the ipsilesional parietal cortex boosts the effects of prism adaptation treatment in neglect. Restorative Neurology and Neuroscience 2015; 33: 647-662
  • 112 Cazzoli D, Muri RM, Schumacher R. , u. a. Theta burst stimulation reduces disability during the activities of daily living in spatial neglect. Brain 2012; 135: 3426-3439
  • 113 Koch G, Bonnì S, Giacobbe V. , u. a. θ-burst stimulation of the left hemisphere accelerates recovery of hemispatial neglect. Neurology 2012; 78: 24-30
  • 114 Nyffeler T, Vanbellingen T, Kaufmann BC. , u. a. Theta burst stimulation in neglect after stroke: functional outcome and response variability origins. Brain 2019; 142: 992-1008
  • 115 Nyffeler T, Cazzoli D, Hess CW. , u. a. One Session of Repeated Parietal Theta Burst Stimulation Trains Induces Long-Lasting Improvement of Visual Neglect. Stroke 2009; 40: 2791-2796
  • 116 Fu W, Song W, Zhang Y. , u. a. Long-term effects of continuous theta-burst stimulation in visuospatial neglect. J Int Med Res 2015; 43: 196-203
  • 117 Bornheim S, Maquet P, Croisier JL. , u. a. Motor cortex Transcranial Direct Current Stimulation (tDCS) improves acute stroke visuo-spatial neglect: A series of four case reports. Brain Stimul 2019; 11: 459-461
  • 118 Ko M-H, Han S-H, Park S-H. , u. a. Improvement of visual scanning after DC brain polarization of parietal cortex in stroke patients with spatial neglect. Neuroscience Letters 2008; 448: 171-174
  • 119 Smit M, Schutter DJLG, Nijboer TCW. , u. a. Transcranial direct current stimulation to the parietal cortex in hemispatial neglect: A feasibility study. Neuropsychologia 2015; 74: 152-161
  • 120 Sunwoo H, Kim Y-H, Chang WH. , u. a. Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect. Neuroscience Letters 2013; 554: 94-98
  • 121 Tscherpel C, Hensel L, Lemberg K. , u. a. The differential roles of contralesional frontoparietal areas in cortical reorganization after stroke. Brain Stimul 2020; 13: 614-624
  • 122 Lotze M, Markert J, Sauseng P. , u. a. The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. Journal of Neuroscience 2006; 26: 6096-6102
  • 123 Johansen-Berg H, Rushworth MFS, Bogdanovic MD. , u. a. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 2002; 99: 14518-14523
  • 124 Rehme AK, Volz LJ, Feis DL. , u. a. Identifying Neuroimaging Markers of Motor Disability in Acute Stroke by Machine Learning Techniques. Cerebral Cortex 2015; 25: 3046-3056
  • 125 Rehme AK, Volz LJ, Feis D-L. , u. a. Individual prediction of chronic motor outcome in the acute post-stroke stage: Behavioral parameters versus functional imaging. Hum Brain Mapp 2015; 36: 4553-4565
  • 126 Siegel JS, Seitzman BA, Ramsey LE. , u. a. Re-emergence of modular brain networks in stroke recovery. Cortex 2018; 101: 44-59
  • 127 Zrenner C, Belardinelli P, Müller-Dahlhaus F. , u. a. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops. Frontiers in Cellular Neuroscience 2016; 10: 92
  • 128 Zrenner C, Desideri D, Belardinelli P. , u. a. Brain Stimulation. Brain Stimul 2018; 11: 374-389
  • 129 Hussain SJ, Hayward W, Fourcand F. , u. a. Phase-dependent transcranial magnetic stimulation of the lesioned hemisphere is accurate after stroke. Brain Stimul 2020; 1-11
  • 130 Tscherpel C, Dern S, Hensel L. et al. Brain responsivity provides an individual readout for motor recovery after stroke. Brain 2020; 143: 1873-1888
  • 131 Hensel L, Grefkes C, Tscherpel C. , u. a. Intermittent theta burst stimulation applied during early rehabilitation after stroke: study protocol for a randomised controlled trial. BMJ Open 2019; 9 (12) e034088
  • 132 Kleineberg NN, Richter MK, Becker I. , u. a. Verum versus sham tDCS in the treatment of stroke-induced apraxia: study protocol of the randomized controlled trial RAdiCS -“Rehabilitating (stroke-induced) Apraxia with direct Current stimulation”. Neurological Research and Practice 2020; 2: 7