Planta Med 2021; 87(05): 351-367
DOI: 10.1055/a-1266-6980
Biological and Pharmacological Activity
Reviews

Antibacterial Compounds from Mushrooms: A Lead to Fight ESKAPEE Pathogenic Bacteria?

Violette Hamers
Faculté de pharmacie, Université de Strasbourg, CNRS, IPHC UMR 7178, CAMBAP, Strasbourg, France
,
Clément Huguet
Faculté de pharmacie, Université de Strasbourg, CNRS, IPHC UMR 7178, CAMBAP, Strasbourg, France
,
Mélanie Bourjot
Faculté de pharmacie, Université de Strasbourg, CNRS, IPHC UMR 7178, CAMBAP, Strasbourg, France
,
Faculté de pharmacie, Université de Strasbourg, CNRS, IPHC UMR 7178, CAMBAP, Strasbourg, France
› Author Affiliations

Abstract

Infectious diseases are among the greatest threats to global health in the 21st century, and one critical concern is due to antibiotic resistance developed by an increasing number of bacterial strains. New resistance mechanisms are emerging with many infections becoming more and more difficult if not impossible to treat. This growing phenomenon not only is associated with increased mortality but also with longer hospital stays and higher medical costs. For these reasons, there is an urgent need to find new antibiotics targeting pathogenic microorganisms such as ESKAPEE bacteria. Most of currently approved antibiotics are derived from microorganisms, but higher fungi could constitute an alternative and remarkable reservoir of anti-infectious compounds. For instance, pleuromutilins constitute the first class of antibiotics derived from mushrooms. However, macromycetes still represent a largely unexplored source. Publications reporting the antibacterial potential of mushroom extracts are emerging, but few purified compounds have been evaluated for their bioactivity on pathogenic bacterial strains. Therefore, the aim of this review is to compile up-to-date data about natural products isolated from fruiting body fungi, which significantly inhibit the growth of ESKAPEE pathogenic bacteria. When available, data regarding modes of action and cytotoxicity, mandatory when considering a possible drug development, have been discussed in order to highlight the most promising compounds.

Supporting Information



Publication History

Received: 20 July 2020

Accepted after revision: 18 September 2020

Article published online:
15 October 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Patridge E, Gareiss P, Kinch MS, Hoyer D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today 2016; 21: 204-207
  • 2 Zhou L, Zhao J, Xu L, Huang Y, Ma Z, Wang J, Jiang W. Antimicrobial Compounds produced by Plant endophytic Fungi. In: De Costa P, Bezerra P. eds. Fungicides: Chemistry, environmental Impact and Health Effects. New York: Nova Science Publishers; 2009: 91-119
  • 3 Habbu P, Warad V, Shastri R, Madagundi S, Kulkarni VH. Antimicrobial metabolites from marine microorganisms. Chin J Nat Med 2016; 14: 101-116
  • 4 Gargano ML, van Griensven LJLD, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP, Zervakis GI. Medicinal mushrooms: Valuable biological resources of high exploitation potential. Plant Biosyst 2017; 151: 548-565
  • 5 Chaturvedi VK, Agarwal S, Gupta KK, Ramteke PW, Singh MP. Medicinal mushroom: boon for therapeutic applications. 3 Biotech 2018; 8: 334-354
  • 6 Schwan WR. Mushrooms: an untapped reservoir for nutraceutical antibacterial applications and antibacterial compounds. Curr Top Nutraceutical Res 2012; 10: 75-82
  • 7 Alves MJ, Ferreira ICFR, Dias J, Teixeira V, Martins A, Pintado M. A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med 2012; 78: 1707-1718
  • 8 Veve MP, Wagner JL. Lefamulin: review of a promising novel pleuromutilin antibiotic. Pharmacotherapy 2018; 38: 935-946
  • 9 Mulani MS, Kamble EE, Kumkar SN, Tawre M, Pardesi K. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 2019; 10: 539
  • 10 Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016; 2016: 2475067 doi:10.1155/2016/2475067
  • 11 Cassini A, Högberg LD, Plachouras D, Quattrochi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Struelens M, Suetens C, Monnet DL. Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 2019; 19: 56-66
  • 12 Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019
  • 13 Interagency Coordination Group (IACG) on Antimicrobial Resistance. No Time to wait: Securing the Future from drug-resistant Infections. New York: United Nations; 2019
  • 14 Zhen X, Lundborg CS, Sun X, Hu X, Dong H. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob Resist Infect Control 2019; 8: 137
  • 15 Touat M, Opatowski M, Brun-Buisson C, Cosker K, Guillemot D, Salomon J, Tuppin P, Lagasner G, Watier L. A payer perspective of the hospital inpatient additional care costs of antimicrobial resistance in France: a matched case-control study. Appl Health Econ Health Policy 2019; 17: 381-389
  • 16 Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet D, Pulcini C, Kahlmet G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens C, Grayson M, Hansen P, Singh N, Theuretzbacher U, Magrini N. The WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18: 318-327
  • 17 Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 2013; 11: 297-308
  • 18 Kurhekar J, Tupas GD, Otero MCB. In-vitro Assays for antimicrobial Assessment. In: Kumar S, Egbuna C. eds. Phytochemistry: An in-silico and in-vitro Update: Advances in phytochemical Research. Singapore: Springer; 2019: 279-298
  • 19 European Committee on Antimicrobial Susceptibility Testing. MIC distributions and epidemiological cut-off values (ECOFF), EUCAST SOP 10.1, 2019. Accessed October 10, 2020 at: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/EUCAST_SOPs/EUCAST_SOP_10.1_MIC_distributions_and_epidemiological_cut-off_value__ECOFF__setting_20191130.pdf
  • 20 Beattie KD, Rouf R, Gander L, May T, Ratkowsky D, Donner C, Gill M, Grice D, Tiralongo E. Antibacterial metabolites from Australian macrofungi from the genus Cortinarius . Phytochemistry 2010; 71: 948-955
  • 21 Comini LR, Vieyra FEM, Mignone RA, Paez P, Mugas ML, Konigheim BS, Cabrera JL, Núñez Montoya SC, Borsarelli CD. Parietin: an efficient photo-screening pigment in vivo with good photosensitizing and photodynamic antibacterial effects in vitro . Photochem Photobiol Sci 2017; 16: 201-210
  • 22 May Zin WW, Buttachon S, Dethoup T, Pereira JA, Gales L, Inácio A, Costa PM, Lee M, Sekeroglu N, Silva AMS, Pinto MMM, Kijjoa A. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry 2017; 141: 86-97
  • 23 Malmir M, Serrano R, Silva O. Anthraquinones as potential antimicrobial Agents–a Review. In: Mendez-Vilas A. ed. Antimicrobial Research: Novel Bioknowledge and educational Programs. Badajoz: Formatex Research Center; 2017: 55-61
  • 24 Quang DN, Hashimoto T, Fournier J, Stadler M, Radulovic N, Asakawa Y. Sassafrins A–D, new antimicrobial azaphilones from the fungus Creosphaeria sassafras . Tetrahedron 2005; 61: 1743-1748
  • 25 Quang DN, Hashimoto T, Stadler M, Radulovic N, Asakawa Y. Antimicrobial azaphilones from the fungus Hypoxylon multiforme . Planta Med 2005; 71: 1058-1062
  • 26 Quang DN, Harinantenaina L, Nishizawa T, Hashimoto T, Kohchi C, Soma GI, Asakawa Y. Inhibition of nitric oxide production in RAW 264.7 cells by azaphilones from xylariaceous fungi. Biol Pharm Bull 2006; 29: 34-37
  • 27 Beni Z, Dekany M, Kovacs B, Csupor B, Zomborszki PZ, Kerekes EB, Szekeres A, Urbán E, Hohmann J, Ványolós A. Bioactivity-guided isolation of antimicrobial and antioxidant metabolites from the mushroom Tapinella atrotomentosa . Molecules 2018; 23: 1082
  • 28 Benedict RG, Brady LR. Antimicrobial activity of mushroom metabolites. J Pharm Sci 1972; 61: 1820-1822
  • 29 Zheng CJ, Sohn MJ, Kim WG. Atromentin and leucomelone, the first inhibitors specific to enoyl-ACP reductase (FabK) of Streptococcus pneumoniae . J Antibiot (Tokyo) 2006; 59: 808-812
  • 30 Łopusiewicz Ł. The isolation, purification and analysis of the melanin pigment extracted from Armillaria mellea rhizomorphs. World Sci News 2018; 100: 135-153
  • 31 Bin L, Wei L, Xiaohong C, Mei J, Dong M. In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom. Ann Microbiol 2012; 62: 1523-1530
  • 32 Chepkirui C, Cheng T, Sum WC, Matasyoh JC, Decock C, Praditya DF, Wittstein K, Steinmann E, Statdler M. Skeletocutins A–L: antibacterial agents from the Kenyan wood-inhabiting Basidiomycete, Skeletocutis sp. J Agric Food Chem 2019; 67: 8468-8475
  • 33 de Carvalho MP, Gulotta G, do Amaral MW, Lünsdorf H, Sasse F, Abraham WR. Coprinuslactone protects the edible mushroom Coprinus comatus against biofilm infections by blocking both quorum-sensing and MurA. Environ Microbiol 2016; 18: 4254-4264
  • 34 Beltran-Garcia MJ, Estarron-Espinosa M, Ogura T. Volatile compounds secreted by the oyster mushroom (Pleurotus ostreatus) and their antibacterial activities. J Agric Food Chem 1997; 45: 4049-4052
  • 35 Heleno SA, Ferreira ICFR, Esteves AP, Ćirić A, Glamočlija J, Martins A, Soković M, Queiroz MJRP. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food Chem Toxicol 2013; 58: 95-100
  • 36 Upadhyay M, Shrivastava B, Jain A, Kidwai M, Kumar S, Gomes J, Goswami DG, Kumar Panda A, Chander Kuhad R. Production of ganoderic acid by Ganoderma lucidum RCKB-2010 and its therapeutic potential. Ann Microbiol 2014; 64: 839-846
  • 37 Shameem N, Kamili AN, Ahmad M, Massoodi FA, Parray JA. Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya. Microb Pathog 2017; 105: 356-360
  • 38 Duan YC, Feng J, Bai N, Li GH, Zhang KQ, Zhao PJ. Four novel antibacterial sesquiterpene-α-amino acid quaternary ammonium hybrids from the mycelium of mushroom Stereum hirsutum . Fitoterapia 2018; 128: 213-217
  • 39 Stadler M, Anke T, Dasenbrock J, Steglich W. Phellodonic acid, a new biologically active hirsutane derivative from Phellodon melaleucus (Thelephoraceae, Basidiomycetes). Z Für Naturforschung C 1993; 48: 545-549
  • 40 Ishikawa NK, Fukushi Y, Yamaji K, Tahara S, Takahashi K. Antimicrobial cuparene-type sesquiterpenes, enokipodins C and D, from a mycelial culture of Flammulina velutipes . J Nat Prod 2001; 64: 932-934
  • 41 Birnbacher J, Schüffler A, Deininger F, Opatz T, Anke T. Isolation and biological activity of new norhirsutanes from Creolophus cirrhatus . Z Für Naturforschung C 2008; 63: 203-206
  • 42 Mothana RAA, Jansen R, Jülich WD, Lindequist U. Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi . J Nat Prod 2000; 63: 416-418
  • 43 Nitthithanasilp S, Intaraudom C, Boonyuen N, Suvannakad R, Pittayakhajonwut P. Antimicrobial activity of cyathane derivatives from Cyathus subglobisporus BCC44381. Tetrahedron 2018; 74: 6907-6916
  • 44 Shiono Y, Hiramatsu F, Murayama T, Koseki T, Funakoshi T. Two cyathane-type diterpenoids from the liquid culture of Strobilurus tenacellus . Chem Biodivers 2008; 5: 1811-1816
  • 45 Shibata H, Irie A, Morita Y. New antibacterial diterpenoids from the Sarcodon scabrosus fungus. Biosci Biotechnol Biochem 1998; 62: 2450-2452
  • 46 Liu YP, Dai Q, Pu CJ, Wang M, Li ZH, Liu JK, Feng T. Psathyrellanic acid, a monocyclic diterpenoid from the Basidiomycete Psathyrella candolleana . Nat Prod Commun 2019; 14: 1-4
  • 47 Liu YP, Dai Q, Wang WX, He J, Li JH, Feng T, Lui JK. Psathyrins: antibacterial diterpenoids from Psathyrella candolleana . J Nat Prod 2020; 83: 1725-1729
  • 48 Kavanagh F, Hervey A, Robbins WJ. Antibiotic substances from Basidiomycetes VIII. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc Natl Acad Sci U S A 1951; 37: 570-574
  • 49 Hartley AJ, de Mattos-Shipley K, Collins CM, Kilaru S, Foster J, Bailey A. Investigating pleuromutilin-producing Clitopilus species and related basidiomycetes. FEMS Microbiol Lett 2009; 297: 24-30
  • 50 Kavanagh F, Hervey A, Robbins WJ. Antibiotic substances from Basidiomycetes IX. Drosophila subatrata. (Batsch ex Fr.) Quel. Proc Natl Acad Sci U S A 1952; 38: 555-560
  • 51 Paukner S, Riedl R. Pleuromutilins: potent drugs for resistant bugs–mode of action and resistance. Cold Spring Harb Perspect Med 2017; 7: a027110
  • 52 Mendes RE, Paukner S, Doyle TB, Gelone SP, Flamm RK, Sader HS. Low prevalence of gram-positive isolates showing elevated lefamulin MIC results during the SENTRY surveillance program for 2015–2016 and characterization of resistance mechanisms. Antimicrob Agents Chemother 2019; 63: e02158-18
  • 53 File TM, Goldberg L, Das A, Sweeney C, Saviski J, Gelone SP, Seltzer E, Paukner S, Wicha WW, Talbot G, Gasink LB. Efficacy and safety of intravenous-to-oral lefamulin, a pleuromutilin antibiotic, for the treatment of community-acquired bacterial pneumonia: the phase III lefamulin evaluation against pneumonia (LEAP 1) trial. Clin Infect Dis Off Publ Infect Dis Soc Am 2019; 69: 1856-1867
  • 54 Al-Fatimi MA, Jülich WD, Jansen R, Lindequist U. Bioactive components of the traditionally used mushroom Podaxis pistillaris . Evid-Based Complement Altern Med ECAM 2006; 3: 87-92
  • 55 Herath HMTB, Jacob M, Wilson AD, Abbas HK, Dhammika Nanayakkara NP. New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens . Nat Prod Res 2013; 27: 1562-1568
  • 56 Yuyama KT, Wendt L, Surup F, Kretz R, Chepkirui C, Wittstein K, Boonlarppradab C, Wongkanoun S, Luangsa-Ard J, Stadler M, Abraham WR. Cytochalasans act as inhibitors of biofilm formation of Staphylococcus aureus . Biomolecules 2018; 8: 129
  • 57 Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sönksen CP, Ludvigsen S, Raventós D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jørgensen SG, Sørensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 2005; 437: 975-980
  • 58 Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventós DS, Neve S, Ravn B, Bonvin AMJJ, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 2010; 328: 1168-1172
  • 59 Li Z, Wang X, Wang X, Teng D, Mao R, Hao Y, Wang J. Research advances on plectasin and its derivatives as new potential antimicrobial candidates. Process Biochem 2017; 56: 62-70
  • 60 Essig A, Hofmann D, Muench D, Gayathri S, Künzler M, Kallio PT, Sahl HG, Wider G, Schneider T, Aebi M. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem 2014; 289: 34953-34964
  • 61 Lee SJ, Yeo WH, Yun BS, Yoo ID. Isolation and sequence analysis of new peptaibol, boletusin, from Boletus spp. J Pept Sci 1999; 5: 374-378
  • 62 Zheng H, Maoqing Y, Liqiu X, Wenjuan T, Liang L, Guolin Z. Purification and characterization of an antibacterial protein from the cultured mycelia of Cordyceps sinensis . Wuhan Univ J Nat Sci 2006; 11: 709-714
  • 63 Houshdar Tehrani MH, Fakhrehoseini E, Kamali Nejad M, Mehregan H, Hakemi-Vala M. Search for proteins in the liquid extract of edible mushroom, Agaricus bisporus, and studying their antibacterial effects. Iran J Pharm Res 2012; 11: 145-150
  • 64 Ngai PHK, Ng TB. A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor-caju . Peptides 2004; 25: 11-17
  • 65 Adeeyo AO, Lateef A, Gueguim-Kana EB. Optimization of the production of extracellular polysaccharide from the Shiitake medicinal mushroom Lentinus edodes (Agaricomycetes) using mutation and a genetic algorithm-coupled artificial neural network (GA-ANN). Int J Med Mushrooms 2016; 18: 571-581
  • 66 Zhu H, Sheng K, Yan E, Quia J, Lv F. Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. Int J Biol Macromol 2012; 50: 840-843
  • 67 Cai M, Lin Y, Luo Y, Liang HH, Sun P. Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-judae (higher Basidiomycetes). Int J Med Mushrooms 2015; 17: 591-600
  • 68 Li S, Shah NP. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275. Food Chem 2014; 165: 262-270
  • 69 Skalicka-Wozniak K, Szypowski J, Los R, Siwulski M, Sobieralski K, Głowniak K, Malm A. Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four Ganoderma lucidum (W Curt.: Fr.) P. Karst. strains cultivated on different wood type substrates. Acta Soc Bot Pol 2012; 81: 17-21
  • 70 Sen IK, Mandal AK, Chakraborti S, Dey B, Chakraborty R, Islam SS. Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int J Biol Macromol 2013; 62: 439-449
  • 71 Thongbai B, Surup F, Mohr K, Kuhnert E, Hyde KD, Stadler M. Gymnopalynes A and B, chloropropynyl-isocoumarin antibiotics from cultures of the Basidiomycete Gymnopus sp. J Nat Prod 2013; 76: 2141-2144
  • 72 Daferner M, Anke T, Hellwig V, Steglich W, Sterner O. Strobilurin M, tetrachloropyrocatechol and tetrachloropyrocatechol methyl ether: new antibiotics from a Mycena species. J Antibiot (Tokyo) 1998; 51: 816-822
  • 73 Takazawa H, Tajima F, Miyashita C. An antifungal compound from “Shiitake” (Lentinus edodes). Yakugaku Zasshi 1982; 102: 489-491
  • 74 Bailey AM, Alberti F, Kilaru S, Collins CM, de Mattos-Shipley K, Hartley AJ, Hayes P, Griffin A, Lazarus CM, Cox RJ, Willis CL, OʼDwyer K, Spence DW, Fostera GD. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Sci Rep 2016; 6: 25202
  • 75 Gautam CK, Madhav M, Sinha A, Osborne WJ. VIT-CMJ2: Endophyte of Agaricus bisporus in production of bioactive compounds. Iran J Biotechnol 2016; 14: 19-24
  • 76 Quang DN, Bach DD, Hashimoto T, Asakawa Y. Chemical constituents of the Vietnamese inedible mushroom Xylaria intracolorata . Nat Prod Res 2006; 20: 317-321
  • 77 Feussi Tala M, Qin J, Ndongo JT, Laatsch H. New azulene-type sesquiterpenoids from the fruiting bodies of Lactarius deliciosus . Nat Prod Bioprospecting 2017; 7: 269-273
  • 78 Arun G, Eyini M, Gunasekaran P. Characterization and biological activities of extracellular melanin produced by Schizophyllum commune (Fries). Indian J Exp Biol 2015; 53: 380-387
  • 79 Schwan WR, Dunek C, Gebhardt M, Engelbrecht K, Klett T, Monte A, Toce J, Rott M, Volk TJ, LiPuma JJ, Liu XT, McKelvey R. Screening a mushroom extract library for activity against Acinetobacter baumannii and Burkholderia cepacia and the identification of a compound with anti-Burkholderia activity. Ann Clin Microbiol Antimicrob 2010; 9: 4
  • 80 Vásquez R, Rios N, Solano G, Cubilla-Rios L. Lentinoids A–D, new natural products isolated from Lentinus strigellus . Mol J Synth Chem Nat Prod Chem 2018; 23: 773-782