Planta Med 2021; 87(09): 724-731
DOI: 10.1055/a-1260-6382
Biological and Pharmacological Activity
Original Papers

In vitro Antileishmanial, Antitrypanosomal, and Anti-inflammatory-like Activity of Terminalia mollis Root Bark

Raymond Muganga
1   University of Rwanda, School of Medicine and Pharmacy, Department of Pharmacy, Butare, Rwanda
,
Joanne Bero
2   Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Bruxelles, Belgium
,
Joëlle Quetin-Leclercq
2   Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Bruxelles, Belgium
,
Luc Angenot
3   Université de Liège, CIRM, Laboratoire de Pharmacognosie, CHU B36, Liège, Belgium
,
Monique Tits
3   Université de Liège, CIRM, Laboratoire de Pharmacognosie, CHU B36, Liège, Belgium
,
Ange Mouithys-Mickalad
4   Centre for Oxygen Research and Development (C. O. R.D), Institute of Chemistry B6a, University of Liège
,
Thierry Franck
4   Centre for Oxygen Research and Development (C. O. R.D), Institute of Chemistry B6a, University of Liège
,
3   Université de Liège, CIRM, Laboratoire de Pharmacognosie, CHU B36, Liège, Belgium
› Author Affiliations
Supported by: Académie de recherche et d'enseignement supérieur CCD- PIC/PRD Project Rwanda
Supported by: Service Public de Wallonie Compléments FEDER - METABO
Supported by: Fonds De La Recherche Scientifique - FNRS T.0190.13

Abstract

This study aims at determining the in vitro antitrypanosomal, antileishmanial, antioxidant, and anti-inflammatory-like activities of Terminalia mollis root crude extracts. The antitrypanosomal and antileishmanial activities on Trypanosoma brucei brucei (strain 427) and promastigotes of Leishmania mexicana mexicana (MHOM/BZ/84/BEL46) were evaluated in vitro. The methanolic root bark extract and standards were profiled by HPLC-PDA, and the majority of compounds identified using literature data. The in vitro antioxidant and anti-inflammatory-like activities were determined by evaluating the effect of crude extracts on reactive oxygen species produced by phorbol 12-myristate 13-acetate-stimulated equine neutrophils using lucigenin-enhanced chemiluminescence and on purified equine myeloperoxidase activity measured by specific immunological extraction followed by enzymatic detection. The methanolic, aqueous crude extract, and aqueous crude extract free of tannins exhibited good growth inhibition on Trypanosoma brucei brucei (IC50 3.72, 6.05, and 4.45 µg/mL respectively) but were inactive against Leishmania mexicana mexicana (IC50 > 100 µg/mL). Suramin (IC50 0.11 µg/mL) and amphotericin (IC50 0.11 µg/mL) were used as standard respectively for the antitrypanosomal and antileishmanial activity. Very interesting antioxidant and anti-inflammatory-like activities were observed with 50% hydroethanolic, aqueous crude extracts, and aqueous crude extract free of tannins as well as with pure punicalagin, gallic, and ellagic acid (IC50 0.38 – 10.51 µg/mL for 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), chemiluminescence, and specific immunological extraction followed by enzymatic detection assays. The study results support traditional medicinal use of the plant for the treatment of parasitical disorders and revealed for the first time the antitrypanosomal potential, anti-inflammatory-like, and antioxidant activity of Terminalia mollis root.

Supporting Information



Publication History

Received: 15 April 2020

Accepted after revision: 10 September 2020

Article published online:
15 October 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bentley SJ, Jamabo M, Boshoff A. The Hsp70/J-protein machinery of the African trypanosome, Trypanosoma brucei . Cell Stress Chaperones 2019; 24: 125-148
  • 2 WHO. Report on the interregional meeting on leishmaniasis among neighboring endemic countries in the Eastern Mediterranean, African and European regions Cairo: WHO Regional Office for the Eastern Mediterranean 2019. Accessed March 22, 2020 at: https://www.who.int/leishmaniasis/resources/who-em-ctd-081-e/en/
  • 3 WHO. Investing to overcome the global impact of neglected tropical diseases third WHO report on neglected tropical diseases 2015. Accessed March 24, 2020 at: https://www.who.int/neglected_diseases/9789241564861/en/
  • 4 Fyhrquist P, Mwasumbi L, Hæggström CA, Vuorela H, Hiltunen R, Vuorela P. Ethnobotanical and antimicrobial investigation on some species of Terminalia and Combretum (Combretaceae) growing in Tanzania. J Ethnopharmacol 2002; 79: 169-177
  • 5 Asres KBF, Knauder E, Yardley V, Kendrick H, Croft SL. In vitro antiprotozoal activity of extract and compounds from the stem bark of Combretum molle . Phytother Res 2001; 15: 613-617
  • 6 Morais TRR, Fávero OA, Reimão JQ, Lourenço WC, Tempone AG, Hristov AD, Di Santi SM, Lago JHG, Sartorelli P, Ferreira MJP. Anti-malaria, anti-trypanosomal, and anti-leishmanial activities of jacaranone isolated from Pentacalia desiderabilis (Vell.) Cuatrec. (Asteraceae). Parasitol Res 2012; 110: 95-101
  • 7 Muganga R, Angenot L, Tits M, Frédérich M. Antiplasmodial and cytotoxicity of Rwandan medicinal plants used in the treatment of Malaria. J Ethnopharmacol 2010; 128: 52-57
  • 8 Muganga R, Angenot L, Tits M, Frédérich M. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. Planta Med 2014; 80: 482-489
  • 9 Liu MKDR, Gray AI, Seidel V. Phytochemical and antifungal studies on Terminalia mollis and Terminalia brachystemma . Fitoterapia 2009; 80: 369-373
  • 10 Masoko P, Ellof JN. Screening of twenty-four South African Combretum and six Terminalia species (Combretaceae) for antioxidant activities. Afr J Trad CAM 2007; 4: 231-239
  • 11 Paixão NPR, Marques JC, Câmara JS. Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chem 2007; 105: 204-214
  • 12 Rosdahl CB, Kawalski MT. Textbook of basic Nursing, 9th edition. Philadelphia: Lippincott & Wilkins; 2008
  • 13 Deby-Dupont GDC, Lamy M. Neutrophil myeloperoxidase revisited: its role in health and diseases. Intensivment 1999; 36: 500-513
  • 14 Re R, Pellegri N, Proteggente A, Pannala A, Yang M, Rice-Evans CA. Antioxidant activity applying an improved ABTS radical cation decolourization assay. ‎Free Radic Biol Med 1999; 26: 1231-1237
  • 15 Conforti FSS, Marrelli M, Menichini F, Statti GA, Uzunov D, Tubaro A, Menichini F, Loggia RD. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J Ethnopharmacol 2008; 116: 144-151
  • 16 Kohnen SFT, Van Antwerpen P, Boudjeltia KZ, Mouithys-Mickalad A, Deby C, Moguilevsky N, Deby-Dupont G, Lamy M, Serteyn D. Resveratrol inhibits the activity of equine neutrophil myeloperoxidase by a direct interaction with the enzyme. J Agric Food Chem 2007; 55: 8080-8087
  • 17 Bala V, Bhardwaj S, Hariharan MNV, Ravi K. Analytical methods for assay of ellagic acid and its solubility studies. J Pharm Biomed 2006; 40: 206-210
  • 18 Abiodun OO, Gbotosho GO, Ajaiyeoba EO, Brun R, Oduola AM. Antitrypanosomal activity of some medicinal plants from Nigerian ethnomedicine. Parasitol Res 2011; 110: 521-526
  • 19 Hoet SSC, Block S, Opperdoes F, Colson P, Baldeyrou B, Lansiaux A, Bailly C, Quetin-Leclercq J. Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep 2004; 21: 353-364
  • 20 Long J, Yang J, Guo Y, Henning S, Lee R, Rasmusen A, Zhang L, Lu Q, Heber D, Li Z. Ellagic acid bioavailability and metabolism after single dose consumption of pure ellagic acid versus pomegranate juice (P06-031-19). CDN 2019; 3 (Suppl. 01) 541 doi:10.1093/cdn/nzz031.p06-031-19
  • 21 Tomás-Barberán FA, González-Sarrías A, García-Villalba R, Núñez-Sánchez MA, Selma MV, García-Conesa MT, Espín JC. Urolithins, the rescue of “old” metabolites to understand a “new” concept: metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res 2017; DOI: 10.1002/mnfr.201500901.
  • 22 Espín JC, Larrosa M, García-Conesa MT, Tomás-Barberán F. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evid Based Complement Alternat Med 2013; 2013: 270418 doi:10.1155/2013/270418
  • 23 Engel JC, Doyle PS, McKerrow JH. Trypanocidal effect of cysteine protease inhibitors in vitro and in vivo in experimental Chagas disease. Medicina (B Aires) 1999; 59 (Suppl. 02) 171-175
  • 24 Assis DM, Gontijo VS, Pereira IO, Santos JAN, Camps I, Nagem TJ, Ellena J, Izidoro MA, Tersariol ILS, de Barros NMT, Doriguetto AC, dos Santos MH, Juliano MA. Inhibition of cysteine proteases by a natural biflavone: behavioral evaluation of fukugetin as papain and cruzain inhibitor. J Enzyme Inhib Med Chem 2013; 28: 661-670 doi:10.3109/14756366.2012.668539
  • 25 Kolodziej H, Kayser O, Kiderlen AF, Ito H, Hatano T, Yoshida T, Foo LY. Antileishmanial activity of hydrolyzable tannins and their modulatory effects on nitric oxide and tumour necrosis factor-α release in macrophages in vitro . Planta Med 2001; 67: 825-832
  • 26 Pinazo MJ, Cañas E, Elizalde JI, García M, Gascón J, Gimeno F, Gomezf J, Guhlg F, Ortizh V, Posadaa EJ, Puentei S, Rezendej J, Salask J, Saravial J, Torricom F, Torrusnand D, Treviño B. Diagnosis, management and treatment of chronic Chagasʼ gastrointestinal disease in areas where Trypanosoma cruzi infection is not endemic. Gastroenterol Hepatol 2010; 33: 191-200
  • 27 Reddy MK, Cupta SK, Jacob MR, Khan SI, Ferreira D. Antioxidant, antimalaria and antimicrobial activities of tannins-rich fractions, ellagitannins and phenolic acids from Punica granatum . Planta Med 2007; 73: 461-467
  • 28 Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J 2013; 2013: 162750
  • 29 Kroes BH, van den Berg AJJ, Quarles van Ufford HC, van Dijk H, Labadie RP. Anti-inflammatory activity of gallic acid. Planta Med 1992; 58: 499-504
  • 30 Lee G, Park JS, Lee EJ, Ahn JH, Kim HS. Anti-inflammatory and antioxidant mechanisms of urolithin B in activated microglia. Phytomedicine 2019; 55: 50-57 doi:10.1016/j.phymed.2018.06.032
  • 31 Corbett SD, Daniel J, Drayton R, Field M, Steinbardt R, Garrett N. Evaluation of the anti-inflammatory activity of ellagic acid. J Perianesth Nurs 2010; 25: 214-220
  • 32 Clark IA, Budd AC, Alleva LM, Cowden WB. Human malaria disease: a consequence of inflammatory cytokine release. Malar J 2006; 5: 85
  • 33 Stijlemans B, De Baetselier P, Magez S, Van Ginderachter JA, De Trez C. African trypanosomiasis-associated anemia: the contribution of the interplay between parasites and the mononuclear phagocyte system. Front Immunol 2018; 9: 218 doi:10.3389/fimmu.2018.00218
  • 34 Chen P, Chen F, Zhou B. Antioxidative, anti-inflammatory and anti-apoptotic effects of ellagic acid in liver and brain of rats treated by D-galactose. Sci Rep 2018; 8: 1465 doi:10.1038/s41598-018-19732-0
  • 35 Hollebeeck S, Winand J, Hérent MF, During A, Leclercq J, Larondelle Y. Anti-inflammatory effects of pomegranate (Punica granatum L.) husk ellagitannins in Caco-2 cells, an in vitro model of human intestine. Food Funct 2012; 3: 875-885
  • 36 Guerrero-Solano JA, Jaramillo-Morales OA, Velázquez-González C, O-Arciniega MD, Castañeda-Ovando A, Betanzos-Cabrera G, Bautista M. Pomegranate as a potential alternative of pain management: a review. Plants 2020; 9: 419 doi:10.3390/plants9040419
  • 37 EDQM. European Pharmacopeia 8.5, General monograph 2.8.14. Strasbourg: Council of Europe; 2015
  • 38 Brun R, Lun ZR. Drug-sensitivity of Chinese trypanosoma-evansi and trypanosoma-equiperdum isolates. Vet Parasitol 1994; 52: 37-46
  • 39 Kpadonou D, Kpoviessi S, Joanne B, Agbani P, Gbaguidi F, Kpadonou-Kpoviessi B, Sinsin B, Frédérich M, Quetin-Leclercq J. Chemical composition, in vitro antioxidant and antiparasitic properties of the essential oils of three plants used in traditional medicine in Benin. J Med Plants Res 2019; 13: 384-395
  • 40 Bero J, Hannaert V, Chataigné G, Hérent MF, Quetin-Leclercq J. In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. J Ethnopharmacol 2011; 137: 998-1002
  • 41 Pycock JF, Allen WE, Morris TH. Rapid, single-step isolation of equine neutrophils on a discontinous Percoll density gradient. Res Vet Sci 1987; 42: 411-412
  • 42 Benbarek H, Deby-Dupont G, Deby C, Caudron I, Mathy-Hartet M, Lamy M, Serteyn D. Experimental model for the study by chemiluminescence of the activation of isolated equine leucocytes. Res Vet Sci 1996; 61: 59-64
  • 43 Tenant JR. Evaluation of the trypan blue technique for determination of cell viability. Transplantation 1964; 2: 911-913
  • 44 Franck T, Kohnen S, Deby-Dupont G, Grulke S, Deby C, Serteyn D. A specific method for measurement of equine active myeloperoxidase in biological samples and in vitro tests. J Vet Diagn Invest 2006; 18: 326-334