Laryngorhinootologie 2021; 100(01): 23-29
DOI: 10.1055/a-1260-3054
Übersicht

Die Tumorstammzellnische im Kopf-Hals-Bereich – Knotenpunkt mit therapeutischem Potenzial?

The tumor stem cell niche of head and neck – point of intersection with therapeutic potential?
Anne Lammert
Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
,
Annette Affolter
Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
,
David Gvaramia
Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
,
Jonas Heid
Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
,
Frederic Jungbauer
Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
,
Claudia Scherl
Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
,
Esther Tenschert
Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
,
Nicole Rotter
Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
,
Nicola Willett
Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
,
Johann Kern
Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
› Author Affiliations

Zusammenfassung

In den letzten Jahren verdichten sich Hinweise, dass eine Tumorstammzellpopulation in Plattenepithelkarzinomen der Kopf-Hals-Region (HNSCC) existiert. Man vermutet, dass diese Tumorstammzellen (CSC) über Selbsterneuerungskapazität verfügen und für Wachstum, Metastasierung, Rekurrenz und Therapieresistenz des Tumors essenziell sind. Stammzellen werden von einer spezialisierten zellulären und nichtzellulären Mikroumgebung unterstützt, die „Stammzellnische“ genannt wird. Eine mögliche Strategie, um CSC zu attackieren, könnte eine Beeinflussung ihrer Nische sein.

Stromal cell-derived factor-1 (SDF-1) gilt als Schlüsselregulator des Zellverkehrs zwischen Nische und der peripheren Blutzirkulation. SDF-1 ist ein multifunktionelles Zytokin, das u. a. von Endothel-/Stromazellen sezerniert wird. Als sein Rezeptor wurde der 7-Transmembranrezeptor CXCR4 identifiziert. Die SDF-1-CXCR4-Achse ist ein wesentlicher Faktor für Migration und Mobilisation von CSC in und aus ihrer Nische. Ihre Existenz und Funktionalität in der Tumorstammzellnische von HNSCC konnte bereits nachgewiesen werden. Strategien, die in diese Interaktion eingreifen, könnten einen entscheidenden Beitrag in der Therapie von HNSCC bieten.

Um Mechanismen in der Tumorstammzellnische von HNSCC in vitro zu untersuchen, werden Modelle benötigt. Wir erwarten, dass die 3D-Zellkultur und das 3D-Bioprinting bei der Entwicklung neuer, individualisierter Therapiestrategien bahnbrechenden Charakter aufweisen werden.

Hier geben wir eine Übersicht über den Wissensstand hinsichtlich der Interaktionen in der Tumorstammzellnische von HNSCC am Beispiel der SDF-1-CXCR4-Achse.

Abstract

An increasing amount of evidence suggests the existence of a stem cell-like population in head and neck squamous cell carcinoma (HNSCC). These cells have been termed cancer stem cells (CSC) due to the shared properties with somatic stem cells, such as the ability to self-renew and differentiate. Furthermore, the CSC are thought to be resistant to antineoplastic treatments and are therefore clinically relevant. As with somatic stem cells, CSC are thought to reside in a specialized supportive microenvironment, called the stem cell niche. One possible strategy to target the CSC could be through affecting functions of the stem cell niche.

Stromal cell-derived factor-1 (SDF-1) is a multifunctional cytokine, which is secreted by e. g. stromal cells within the niche. SDF-1 is known to be the major regulator of stem cell trafficking between the niche and the peripheral vascular system. It elicits the chemotactic activity through interaction with a transmembrane receptor CXCR4, expressed by CSC. The SDF-1-CXCR4-axis is thought to play a crucial role in the interaction between CSC and their supportive cells in the tumor niche. A better understanding of these interactions could help in gaining further insight into the pathophysiology of progression/recurrence of malignant diseases and aid in finding new strategies for therapy.

Specialized cell culture models are of advantage for deciphering the mechanisms of interaction between CSC and their niche. We anticipate that the recent technological advancements in bioprinting and the development of complex 3D cell culture model systems will contribute to our understanding of these mechanisms and to the establishment of individualized therapies.

Here were provide an overview of the current knowledge on the CSC-tumor stem cell niche interactions in HNSCC with a focus on the SDF-1-CXCR4 axis.



Publication History

Received: 08 February 2020

Accepted: 09 September 2020

Article published online:
05 January 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Soltanian S, Matin MM. Cancer stem cells and cancer therapy. Tumour Biol 2011; 32: 425-440
  • 2 Faber A, Aderhold C, Goessler UR. et al. Interaction of a CD44+ head and neck squamous cell carcinoma cell line with a stromal cell-derived factor-1-expressing supportive niche: An in vitro model. Oncol Lett 2014; 7 (01) 82-86
  • 3 Prince ME, Sivanandan R, Kaczorowski A. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007; 104: 973-978
  • 4 Franzmann EJ, Reategui EP, Pedroso F. et al. Soluble CD44 is a potential marker for the early detection of head and neck cancer. Cancer Epidemiol Biomarkers Prev 2007; 16: 1348-1355
  • 5 Saito H, Tsujitani S, Katano K. et al. Serum concentration of CD44 variant 6 and its relation to prognosis in patients with gastric carcinoma. Cancer 1998; 83: 1094-1101
  • 6 Ponta H, Wainwright D, Herrlich P. The CD44 protein family. Int J Biochem Cell Biol 1998; 30: 299-305
  • 7 Screaton GR, Bell MV, Bell JI. et al. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J Biol Chem 1993; 268: 12235-12238
  • 8 Stamenkovic I, Amiot M, Pesando JM. et al. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 1989; 56: 1057-1062
  • 9 Gunthert U, Hofmann M, Rudy W. et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 1991; 65: 13-24
  • 10 Thenappan A, Li Y, Shetty K. et al. New Therapeutics Targeting Colon Cancer Stem Cells. Curr Colorectal Cancer Rep 2009; 5: 209
  • 11 Park SY, Lee HE, Li H. et al. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res 2010; 16: 876-887
  • 12 Okayama H, Kumamoto K, Saitou K. et al. CD44v6, MMP-7 and nuclear Cdx2 are significant biomarkers for prediction of lymph node metastasis in primary gastric cancer. Oncol Rep 2009; 22: 745-755
  • 13 Faber A, Barth C, Hormann K. et al. CD44 as a stem cell marker in head and neck squamous cell carcinoma. Oncol Rep 2011; 26: 321-326
  • 14 Han J, Kioi M, Chu WS. et al. Identification of potential therapeutic targets in human head & neck squamous cell carcinoma. Head Neck Oncol 2009; 1: 27
  • 15 Pries R, Wittkopf N, Hasselbacher K. et al. Constitutive expression of the potential stem cell marker CD44 in permanent HNSCC cell lines. Hno 2008; 56: 461-466
  • 16 Herold-Mende C, Seiter S, Born AI. et al. Expression of CD44 splice variants in squamous epithelia and squamous cell carcinomas of the head and neck. J Pathol 1996; 179: 66-73
  • 17 Schirrmacher V. Cancer metastasis: experimental approaches, theoretical concepts, and impacts for treatment strategies. Adv Cancer Res 1985; 43: 1-73
  • 18 Okamoto I, Tsuiki H, Kenyon LC. et al. Proteolytic cleavage of the CD44 adhesion molecule in multiple human tumors. Am J Pathol 2002; 160: 441-447
  • 19 Ma I, Alan A. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Reviews and Reports 2010; 7: 292-306
  • 20 Kim N, Choung H, Lee M. et al. Cancer stem cell markers in eyelid sebaceous gland carcinoma: High expression of ALDH1, CD133 and ABCG2 correlates with poor prognosis. Investigative Ophthalmology and Visual Science 2015; 56: 1813-1819
  • 21 Huang C, Xu X, Wu T. et al. Correlation of ALDH1, CD44, OCT4 and SOX2 in tongue squamous cell carcinoma and their association with disease progression and prognosis. Journal of Oral Pathology and Medicine 2014; 43: 492-498
  • 22 Yu S, Cirillo N. The molecular markers of cancer stem cells in head and neck tumors. Journal of Cellular Pathology 2020; 235 (01) 65-73
  • 23 Yang L, Ren Y, Yu X. et al. ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Modern Pathology 2013; 27: 775-783
  • 24 Michifuri Y, Hirohashi Y, Torigoe T. et al. High expression of ALDH1 and SOX2 diffuse staining pattern of oral squamous cell carcinomas correlates to lymph node metastasis. Pathology International 2012; 62: 684-689
  • 25 Dong Y, Ochsenreither S, Cai C. et al. Aldehyde dehydrogenase 1 isoenzyme expression as a marker of cancer stem cells correlates to histopathological features in head and neck cancer: A meta-analysis. PLOS one 2017; 12 (11) e0187615
  • 26 Leinung M, Ernst B, Döring C. et al. Expression of ALDH1A1 and CD44 in primary head and neck squamous cell carcinoma and their value for carcinogenesis, tumor pregression and cancer stem cell identification. Oncology Letters 2015; 10: 2289-2294
  • 27 Mannelli G, Magnelli L, Deganello A. et al. Detection of putative stem cell markers, CD44 / CD133, in primary and lymph node metastases in head and neck squamous cell carcinomas. A priliminary immunohistochemical and in vitro study. Clinical Otolaryngology 2015; 40: 312-320
  • 28 Tang K, Dai Y, Tong M. et al. A CD90+ tumor-initiating cell population with an aggressive signature and metastatic capacity in esophageal cancer. Cancer Research 2013; 73: 2322-2332
  • 29 Adachi K, Suemori H, Yasuda SY. et al. Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes to Cells 2010; 15: 455-470
  • 30 Kondo J, Endo H, Okuyama H. et al. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci 2011; 108: 6235-6240
  • 31 Endo H, Okami J, Okuyama H. et al. Spheroid culture of primary lung cancer cells with neuregulin 1/HER3 pathway activation. J Thorac Oncol 2013; 8: 131-139
  • 32 Yoshida T, Okuyama H, Nakayama M. et al. High-dose chemotherapeutics of intravesical chemotherapy rapidly induce mitochondrial dysfunction in bladder cancer-derived spheroids. Cancer Sci 2015; 106: 69-77
  • 33 Tanaka N, Osman AA, Takahashi Y. et al. Head and neck cancer organoids established by modification of the CTOS method can be used to predict in vivo drug sensitivity. Oral Oncol 2018; 87: 49-57
  • 34 Chen D, Wang C-Y. Targeting cancer stem cells in squamous cell carcinoma. Precision Clinical Medicine 2019; 2 (03) 152-165
  • 35 Lim YC, Oh SY, Cha YY. et al. Cancer stem cells traits in squamousheres derived from primary head and neck squamous cell carcinomas. Oral Oncol 2011; 47: 83-91
  • 36 Faber A, Roderburg C, Wein F. et al. The Many Facets of SDF-1alpha, CXCR4 Agonists and Antagonists on Hematopoietic Progenitor Cells. J Biomed Biotechnol 2007; 2007: 26065
  • 37 De La Luz Sierra M, Yang F, Narazaki M. et al. Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood 2004; 103: 2452-2459
  • 38 Mohle R, Bautz F, Rafii S. et al. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 1998; 91: 4523-4530
  • 39 Petit I, Goichberg P, Spiegel A. et al. Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J Clin Invest 2005; 115: 168-176
  • 40 Goichberg P, Kalinkovich A, Borodovsky N. et al. cAMP-induced PKCzeta activation increases functional CXCR4 expression on human CD34+ hematopoietic progenitors. Blood 2006; 107: 870-879
  • 41 Ryan SL, Baird AM, Vaz G. et al. Drug Discovery Approaches Utilizing Three-Dimensional Cell Culture. Assay Drug Dev Technol 2016; 14 (01) 19-28
  • 42 Gu L, Mooney DJ. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat Rev Cancer 2016; 16 (01) 56-66
  • 43 Almela T, Al-Sahaf S, Brook IM. et al. 3D printed tissue engineered model for bone invasion of oral cancer. Tissue Cell 2018; 52: 71-77
  • 44 Koeck S, Kern J, Zwierzina M. et al. The influence of stromal cells and tumor-microenvironment-derived cytokines and chemokines on CD3+CD8+ tumor infiltrating lymphocyte subpopulations. A. Oncoimmunology 2017; 6 (06) e1323617