RSS-Feed abonnieren
DOI: 10.1055/a-1255-8937
COVID-19 bei Kindern und Jugendlichen
COVID-19 in children and adolescents
ZUSAMMENFASSUNG
Das neuartige Coronavirus SARS-CoV-2 ist der Auslöser von COVID-19, einer Erkrankung, die Millionen von Menschenleben weltweit bedroht. Ca. 10–20 % aller Erwachsenen mit COVID-19 entwickeln schwere oder lebensbedrohliche Verläufe, die von Akutem Atemnotsyndrom (ARDS), Koagulopathie und/oder Zytokinsturm gekennzeichnet sind. Kinder und Jugendliche haben ein geringeres Risiko, symptomatisch zu erkranken und/oder schwere Verläufe zu entwickeln, was vermuten lässt, dass es altersabhängige Wirtsmechanismen gibt, die schweren Verläufen entgegenwirken könnten. Obwohl kürzlich hochinflammatorische, teils lebensbedrohliche Erkrankungen bei Kindern und Jugendlichen beschrieben wurden und viel Beachtung fanden, bleiben sie insgesamt bisher relativ selten. Ob Kinder signifikant zur Transmission auf Populationsebene beitragen, ist unklar, muss aber zumindest weiter angenommen werden. Mehrere Hypothesen versuchen Unterschiede im Hinblick auf klinischen Verlauf und Erkrankungsrisiko zwischen den Altersgruppen und einzelnen Individuen zu erklären. Dieser Artikel fasst den aktuellen Wissensstand zur Immunpathogenese von COVID-19 mit Fokus auf das Kindes- und Jugendalter zusammen.
SUMMARY
SARS-CoV-2 is the pathogen causing COVID-19, a pandemic threatening millions of lives globally. Children and young people (CYP) usually do not develop severe disease. However, a minority of CYP contracting SARS-CoV-2 infections have been reported to develop severe hyper-inflammatory phenotypes. Host mechanisms centrally contribute to disease pathology and resulting clinical phenotypes. Several hypotheses try to explain age-related differences in disease presentation and severity, including prevalence of seasonal coronavirus infections in CYP and cross-relative antibodies, and co-clearance with other virus infections. Furthermore, high expression of transmembrane ACE2 may modulate inflammation in children while mediating infection of epithelial cells. Further protective mechanisms in CYP may include recent vaccinations and a diverse T cell repertoire. Thus, it remains an important, but unanswered question whether CYP significantly contribute to community transmission. Here, the authors review age-related host factors in COVID-19, and address the confusion around seropositivity and immunity.
Publikationsverlauf
Artikel online veröffentlicht:
02. November 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Zhu N. et al A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382 (08) 727-733
- 2 Hedrich CM. COVID-19 – Considerations for the paediatric rheumatologist. Clin Immunol 2020; 214: 1-3
- 3 Leung GM. et al Seroprevalence of IgG antibodies to SARS-coronavirus in asymptomatic or subclinical population groups. Epidemiol Infect 2006; 134 (02) 211-221
- 4 Lu R. et al Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395 10224 565-574
- 5 Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38 (01) 1-9
- 6 Zhou P. et al A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579 7798 270-273
- 7 Hamming I. et al Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203 (02) 631-637
- 8 Sims AC. et al Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J Virol 2005; 79 (24) 15511-15524
- 9 Sungnak W, Huang N, Bécavin C. et al HCA Lung Biological Network, SARS-CoV-2 Entry Genes Are Most Highly Expressed in Nasal Goblet and Ciliated Cells within Human Airways. arXiv 2003.06122, 2020
- 10 Xu H. et al High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020; 12 (01) 8
- 11 Zhang W. et al The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol 2020; 214: 108393
- 12 Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 2005; 5 (12) 917-927
- 13 Ben Addi A. et al Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A(2B) receptor. Eur J Immunol 2008; 38 (06) 1610-1620
- 14 Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019; 50 (04) 907-923
- 15 de Wit E. et al SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14 (08) 523-534
- 16 Alunno A. et al Pathogenic and Therapeutic Relevance of JAK/STAT Signaling in Systemic Lupus Erythematosus: Integration of Distinct Inflammatory Pathways and the Prospect of Their Inhibition with an Oral Agent. Cells 2019; 8: 8
- 17 Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39 (05) 529-539
- 18 Kindler E, Thiel V, Weber F. Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Adv Virus Res 2016; 96: 219-243
- 19 Lu X. et al SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2011; 42 (01) 37-45
- 20 Gao X. et al Antibody against nucleocapsid protein predicts susceptibility to human coronavirus infection. J Infect 2015; 71 (05) 599-602
- 21 Che XY. et al Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43. J Infect Dis 2005; 191 (12) 2033-2037
- 22 Felsenstein S. et al COVID-19: Immunology and treatment options. Clin Immunol 2020; 215: 108448
- 23 Felsenstein SH, Hedrich CM. COVID-19 in children and young people. Lancet Rheumatology 2020
- 24 Roberts A. et al Animal models and vaccines for SARS-CoV infection. Virus Res 2008; 133 (01) 20-32
- 25 Flipse J. et al Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages; Balancing Higher Fusion against Antiviral Responses. Sci Rep 2016; 6: 29201
- 26 Cheung CY. et al Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 2005; 79 (12) 7819-7826
- 27 Chen J, Jiang Q, Xia X. et al Individual Variation of the SARS-CoV2 Receptor ACE2 Gene Expression and Regulation. Preprints 2020 Im Internet: https://www.preprints.org/manuscript/202003.0191/v1
- 28 Simoes e Silva AC. et al ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol 2013; 169 (03) 477-492
- 29 de Bree LCJ. et al Non-specific effects of vaccines: Current evidence and potential implications. Semin Immunol 2018; 39: 35-43
- 30 Goodridge HS. et al Harnessing the beneficial heterologous effects of vaccination. Nat Rev Immunol 2016; 16 (06) 392-400
- 31 Davies P. et al Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: a multicentre observational study. Lancet Child Adolesc Health 2020; 4 (09) 669-677 doi: 10.1016/S2352-4642(20)30215-7
- 32 Whittaker E. et al Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA 2020
- 33 Dufort EM. et al Multisystem Inflammatory Syndrome in Children in New York State. N Engl J Med 2020; 383 (04) 347-358
- 34 Feldstein LR. et al Multisystem Inflammatory Syndrome in U. S. Children and Adolescents. N Engl J Med 2020; 383 (04) 334-346
- 35 Pain CE. et al Novel paediatric presentation of COVID-19 with ARDS and cytokine storm syndrome without respiratory symptoms Comment. Lancet Rheumatology 2020; 2 (07) E376-E379
- 36 Lamers MM. et al SARS-CoV-2 productively infects human gut enterocytes. Science 2020; 369 6499 50-54
- 37 Rowley AH. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol 2020
- 38 Pan D. et al The impact of ethnicity on clinical outcomes in COVID-19: A systematic review. EClinicalMedicine 2020; 23: 100404
- 39 Raisi-Estabragh Z. et al Greater risk of severe COVID-19 in Black, Asian and Minority Ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: study of 1326 cases from the UK Biobank. J Public Health (Oxf) 2020
- 40 Gupta R, Misra A. COVID19 in South Asians/Asian Indians: Heterogeneity of data and implications for pathophysiology and research. Diabetes Res Clin Pract 2020; 165: 10 DOI: 10.1016/j.diabres.2020.108267
- 41 Belhadjer Z. et al Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation 2020
- 42 Grifoni A. et al Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020; 181 (07) 1489-1501 e15
- 43 Favalli EG. et al COVID-19 infection and rheumatoid arthritis: Faraway, so close!. Autoimmun Rev 2020; 19 (05) 102523
- 44 Ai JW. et al The Risk of Tuberculosis in Patients with Rheumatoid Arthritis Treated with Tumor Necrosis Factor-alpha Antagonist: A Metaanalysis of Both Randomized Controlled Trials and Registry/Cohort Studies. J Rheumatol 2015; 42 (12) 2229-2237
- 45 Aikawa NE. et al Glucocorticoid: major factor for reduced immunogenicity of 2009 influenza A (H1N1) vaccine in patients with juvenile autoimmune rheumatic disease. J Rheumatol 2012; 39 (01) 167-173
- 46 Campbell L. et al Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatology (Oxford) 2011; 50 (03) 552-562
- 47 Falagas ME. et al Infection-related morbidity and mortality in patients with connective tissue diseases: a systematic review. Clin Rheumatol 2007; 26 (05) 663-670
- 48 Garcia-Doval I. et al Risk of serious infections, cutaneous bacterial infections, and granulomatous infections in patients with psoriasis treated with anti-tumor necrosis factor agents versus classic therapies: Prospective meta-analysis of Psonet registries. J Am Acad Dermatol 2017; 76 (02) 299-308 e16
- 49 Geng Z. et al Tocilizumab and the risk of respiratory adverse events in patients with rheumatoid arthritis: a systematic review and meta-analysis of randomised controlled trials. Clin Exp Rheumatol 2019; 37 (02) 318-323
- 50 Giancane G. et al Opportunistic infections in immunosuppressed patients with juvenile idiopathic arthritis: analysis by the Pharmachild Safety Adjudication Committee. Arthritis Res Ther 2020; 22 (01) 71
- 51 Minozzi S. et al Risk of infections using anti-TNF agents in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: a systematic review and meta-analysis. Expert Opin Drug Saf 2016; 15 (Suppl. 01) 11-34
- 52 Thong KM, Chan TM. Infectious complications in lupus nephritis treatment: a systematic review and meta-analysis. Lupus 2019; 28 (03) 334-346
- 53 Youssef J, Novosad SA, Winthrop KL. Infection Risk and Safety of Corticosteroid Use. Rheum Dis Clin North Am 2016; 42 (01) 157-176 ix–x
- 54 Price E. et al Identifying rheumatic disease patients at high risk and requiring shielding during the COVID-19 pandemic. Clin Med (Lond) 2020
- 55 Hua C. et al Effect of methotrexate, anti-tumor necrosis factor alpha, and rituximab on the immune response to influenza and pneumococcal vaccines in patients with rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 2014; 66 (07) 1016-1026
- 56 Islam S. et al Functional immune response to influenza H1N1 in children and adults after live attenuated influenza virus vaccination. Scand J Immunol 2019; 90 (04) e12801
- 57 Miyamoto M. et al Vaccine antibodies and T- and B-cell interaction in juvenile systemic lupus erythematosus. Lupus 2011; 20 (07) 736-744
- 58 Heijstek MW. et al Vaccination in paediatric patients with auto-immune rheumatic diseases: a systemic literature review for the European League against Rheumatism evidence-based recommendations. Autoimmun Rev 2011; 11 (02) 112-122
- 59 Stoof SP. et al Kinetics of the long-term antibody response after meningococcal C vaccination in patients with juvenile idiopathic arthritis: a retrospective cohort study. Ann Rheum Dis 2014; 73 (04) 728-734
- 60 Heijstek MW. et al Differences in persistence of measles, mumps, rubella, diphtheria and tetanus antibodies between children with rheumatic disease and healthy controls: a retrospective cross-sectional study. Ann Rheum Dis 2012; 71 (06) 948-954
- 61 Campos LM. et al High disease activity: an independent factor for reduced immunogenicity of the pandemic influenza a vaccine in patients with juvenile systemic lupus erythematosus. Arthritis Care Res (Hoboken) 2013; 65 (07) 1121-1127
- 62 Maritsi D. et al Markedly decreased antibody titers against hepatitis B in previously immunised children presenting with juvenile idiopathic arthritis. Clin Exp Rheumatol 2013; 31 (06) 969-973
- 63 van der Vries E. et al Prolonged influenza virus shedding and emergence of antiviral resistance in immunocompromised patients and ferrets. PLoS Pathog 2013; 9 (05) e1003343
- 64 Tabatabai J. et al Respiratory syncytial virus A in haematological patients with prolonged shedding: Premature stop codons and deletion of the genotype ON1 72-nucleotide-duplication in the attachment G gene. J Clin Virol 2018; 98: 10-17
- 65 England N. Clinical guide for the management of Rheumatology patients during the coronavirus pandemic. 2020 [cited 8 April 2020 Version 2 Im Internet: https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/clinical-guide-rheumatology-patients-v2-08-april-2020.pdf
- 66 D’Antiga L. Coronaviruses and Immunosuppressed Patients: The Facts During the Third Epidemic. Liver Transpl 2020; 26 (06) 832-834
- 67 Li F, Cai J, Dong N. First cases of COVID-19 in heart transplantation from China. J Heart Lung Transplant 2020; 39 (05) 496-497
- 68 Guan WJ. et al Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J 2020; 55 (05) 2000547
- 69 Guillen E. et al Case report of COVID-19 in a kidney transplant recipient: Does immunosuppression alter the clinical presentation?. Am J Transplant 2020; 20 (07) 1875-1878
- 70 Huang D. et al Clinical features of severe patients infected with 2019 novel coronavirus: a systematic review and meta-analysis. Ann Transl Med 2020; 8 (09) 576
- 71 Korean Society of Infectious Diseases and Korea Centers for Disease Control and Prevention Analysis on 54 Mortality Cases of Coronavirus Disease 2019 in the Republic of Korea from January 19 to March 10, 2020. J Korean Med Sci 2020; 35 (12) e132
- 72 Lescure FX. et al Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis 2020; 20 (06) 697-706
- 73 Liang W. et al Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 2020; 21 (03) 335-337
- 74 Tian S. et al Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J Thorac Oncol 2020; 15 (05) 700-704
- 75 Wang Z. et al Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clin Infect Dis 2020
- 76 Yang X. et al Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8 (05) 475-481
- 77 Yu J. et al SARS-CoV-2 Transmission in Patients With Cancer at a Tertiary Care Hospital in Wuhan, China. JAMA Oncol 2020; 6 (07) 1108-1110
- 78 Zhan L. et al Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol 2020; 31 (07) 894-901
- 79 Zhou F. et al Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 10229 1054-1062
- 80 Morand A. et al Child with liver transplant recovers from COVID-19 infection. A case report. Arch Pediatr 2020; 27 (05) 275-276
- 81 Ogimi C. et al Prolonged Shedding of Human Coronavirus in Hematopoietic Cell Transplant Recipients: Risk Factors and Viral Genome Evolution. J Infect Dis 2017; 216 (02) 203-209
- 82 Ogimi C. et al Clinical Significance of Human Coronavirus in Bronchoalveolar Lavage Samples From Hematopoietic Cell Transplant Recipients and Patients With Hematologic Malignancies. Clin Infect Dis 2017; 64 (11) 1532-1539
- 83 Gerna G. et al Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients. J Med Virol 2006; 78 (07) 938-949
- 84 Liu WD. et al Clinical manifestations and risk factors for mortality of patients with severe influenza during the 2016–2018 season. Int J Infect Dis 2020; 95: 347-351
- 85 Pochon C, Voigt S. Respiratory Virus Infections in Hematopoietic Cell Transplant Recipients. Front Microbiol 2018; 9: 3294
- 86 Soudani N. et al Prevalence and characteristics of acute respiratory virus infections in pediatric cancer patients. J Med Virol 2019; 91 (07) 1191-1201
- 87 Black CP. Systematic review of the biology and medical management of respiratory syncytial virus infection. Respir Care 2003; 48 (03) 209-231 discussion 231–233
- 88 Ogimi C. et al Characteristics and Outcomes of Coronavirus Infection in Children: The Role of Viral Factors and an Immunocompromised State. J Pediatric Infect Dis Soc 2019; 8 (01) 21-28
- 89 Ye C. et al Clinical features of rheumatic patients infected with COVID-19 in Wuhan, China. Ann Rheum Dis 2020; 79 (08) 1007-1013 doi: 10.1136/annrheumdis-2020-217627
- 90 To KK. et al Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020; 20 (05) 565-574
- 91 Wolfel R. et al Virological assessment of hospitalized patients with COVID-2019. Nature 2020; 581 7809 465-469
- 92 Zielinski CE. et al Dissecting the human immunologic memory for pathogens. Immunol Rev 2011; 240 (01) 40-51
- 93 Carollo M. et al Hepatitis B specific T cell immunity induced by primary vaccination persists independently of the protective serum antibody level. Vaccine 2013; 31 (03) 506-513
- 94 Borgmann S. et al Mumps virus infection in vaccinated patients can be detected by an increase in specific IgG antibodies to high titres: a retrospective study. Epidemiol Infect 2014; 142 (11) 2388-2396
- 95 Zinkernagel RM, Hengartner H. On immunity against infections and vaccines: credo 2004. Scand J Immunol 2004; 60 1–2 9-13
- 96 Grandjean L, Saso A, Ortiz A. et al Humoral Response Dynamics Following Infection with SARS-CoV-2. medRxiv 2020 Im Internet: https://www.medrxiv.org/content/10.1101/2020.07.16.20155663v2
- 97 Fan W. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. 2020 Im Internet: https://www.medrxiv.org/content/10.1101/2020.03.30.20047365v2.full.pdf
- 98 Yongchen Z. et al Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID-19 patients. Emerg Microbes Infect 2020; 9 (01) 833-836
- 99 Long QX. et al Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020; 26 (08) 1200-1204 doi: 10.1038/s41591-020-0965-6
- 100 Kadkhoda K. COVID-19 serologic testing: FAQs and caveats. Cleve Clin J Med 2020; 87 (06) 329-333
- 101 Chaturvedi R. et al Efficacy of Serology Testing in Predicting Reinfection in Patients with SARS-CoV-2. Disaster Med Public Health Prep 2020: 1-7
- 102 Stringhini S. et al Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet 2020
- 103 Long QX. et al Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020; 26 (06) 845-848
- 104 Zheng HY. et al Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol 2020; 17 (05) 541-543
- 105 Wilk AJ. et al A single-cell atlas of the peripheral immune response to severe COVID-19. medRxiv 2020
- 106 Zhao J. et al Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses. Sci Immunol 2017; 2: 14
- 107 Fan YY. et al Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection. Arch Virol 2009; 154 (07) 1093-1099
- 108 Libraty DH. et al Human CD4(+) memory T-lymphocyte responses to SARS coronavirus infection. Virology 2007; 368 (02) 317-321
- 109 Channappanavar R. et al Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J Virol 2014; 88 (19) 11034-11044