Horm Metab Res 2021; 53(03): 161-168
DOI: 10.1055/a-1253-2854
Endocrine Care

High Prevalence of Adrenal Remnant Tissue in Patients Undergoing Bilateral Adrenalectomy for Cushing’s Disease

Julian B. Wilson
1   Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
,
Mohan Zopey
1   Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
,
Jaimie Augustine
1   Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
,
Randolph Schaffer
2   Department of Surgery, Scripps Green Hospital, La Jolla, CA, USA
,
Manfred Chiang
3   Brookfield Surgical Associates, Brookfield, WI, USA
,
Theodore C. Friedman
1   Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
› Author Affiliations
Funding Information TF received funding by the Accelerating Excellence in Translational Science (AXIS) grant #U54MD007598, National Institute on Minority Health and Health Disparities grant #S21MD000103, Diversity- Promoting Institution Drug Abuse Research Program (DIDARP) grant (R24DA017298) and California Tobacco-Related Disease Research Program (TRDRP) Grant 251P003 and 28CP-0040.

Abstract

Bilateral adrenalectomy (BLA) is a treatment option for patients with Cushing’s Disease (CD) if transsphenoidal pituitary surgery fails or is not a therapeutic option. For most patients, BLA eliminates endogenous glucocorticoid and mineralocorticoid production, but for a small number of patients, endogenous secretion of adrenal hormones from adrenal tissue continues or recurs, leading to signs and symptoms of hypercortisolism. If adrenal tissue is confined to the adrenal bed, it is considered adrenal remnant tissue, while if it is outside the adrenal bed, it is considered adrenal rest tissue. We retrospectively evaluated morning serum cortisol, nighttime serum cortisol, nighttime salivary cortisol, and 24-h urine free cortisol on at least three occasions in 10 patients suspected of having endogenous cortisol production. Imaging of adrenal remnant tissue was also reviewed. Ten of 51 patients who underwent BLA during this time period had adrenal remnant/rest tissue marked by detectable endogenous glucocorticoid production; 9 of the 10 patients had signs and symptoms of hypercortisolism. Localization and treatment proved difficult. We conclude that the incidence of adrenal remnant/rest tissue in those undergoing BLA following unsuccessful pituitary surgery was 12% although there may have been a selection bias affecting this prevalence. The first indication of remnant tissue occurrence is a reduction in glucocorticoid replacement with symptoms of hypercortisolism. If this occurs, endogenous cortisol production should be tested for by cortisol measurements using a highly specific cortisol assay while the patient is taking dexamethasone or no glucocorticoid replacement. Endocrinologists need to monitor the development of both adrenal remnant tissue and Nelson’s syndrome following BLA.



Publication History

Received: 13 August 2020

Accepted after revision: 27 August 2020

Article published online:
22 October 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Friedman TC. The adrenal gland. In: Benjamin IB, Griggs RC, Wing EJ, Fitz JG, Eds. Andreoli and Carpenter’s Cecil Essentials of Medicine 9th ed.. Philadelphia: Saunders Elsevier; 2015: 642-651
  • 2 Newell-Price J, Bertagna X, Grossman AB. et al. Cushing’s syndrome. Lancet 2006; 367: 1605-1617
  • 3 Stewart PM, Newell-Price JDC. The Adrenal Cortex. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, Eds. Williams Textbook of Endocrinology. 13th edition. Philadelphia, PA: Elsevier; 2016: 489-555
  • 4 Sharma ST, Nieman LK, Feelders RA. Cushing’s syndrome: Epidemiology and developments in disease management. Clin Epidemiol 2015; 7: 281-293
  • 5 Nieman LK, Biller BM, Findling JW. et al. The diagnosis of Cushing’s syndrome: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2008; 93: 1526-1540
  • 6 Petersenn S, Beckers A, Ferone D. et al. Therapy of endocrine disease: Outcomes in patients with Cushing’s disease undergoing transsphenoidal surgery: Systematic review assessing criteria used to define remission and recurrence. Eur J Endocrinol 2015; 172: R227-R239
  • 7 Rizk A, Honegger J, Milian M. et al. Treatment Options in Cushing’s Disease. Clin Med Insights Oncol 2012; 6: 75-84
  • 8 Ritzel K, Beuschlein F, Mickisch A. et al. Clinical review: Outcome of bilateral adrenalectomy in Cushing’s syndrome: a systematic review. J Clin Endocrinol Metab 2013; 98: 3939-3948
  • 9 Reincke M, Ritzel K, Osswald A. et al. A critical reappraisal of bilateral adrenalectomy for ACTH-dependent Cushing’s syndrome. Eur J Endocrinol 2015; 173: M23-M32
  • 10 Chaffee WR, Moses AM, Lloyd CW. et al. Cushing’s syndrome with accessory adrenocortical tissue. JAMA 1963; 186: 799-801
  • 11 Kemink L, Hermus A, Pieters G. et al. Residual adrenocortical function after bilateral adrenalectomy for pituitary-dependent Cushing’s syndrome. J Clin Endocrinol Metab 1992; 75: 1211-1214
  • 12 Strauch GO, Vinnick L. Persistent Cushing’s syndrome apparently cured by ectopic adrenalectomy. JAMA 1972; 221: 183-184
  • 13 Siegal AM, Kreisberg RA, Hershman JM. et al. Recurrent Cushing’s disease following total adrenalectomy. Arch Intern Med 1972; 129: 642-647
  • 14 Leibowitz J, Pertsemlidis D, Gabrilove J. Recurrent Cushing’s syndrome due to recurrent adrenocortical tumor—fragmentation or tumor in ectopic adrenal tissue?. J Clin Endocrinol Metab 1998; 83: 3786-3789
  • 15 Ayala AR, Basaria S, Udelsman R. et al. Corticotropin-independent Cushing’s syndrome caused by an ectopic adrenal adenoma. J Clin Endocrinol Metab 2000; 85: 2903-2906
  • 16 Schechter DC. Aberrant adrenal tissue. Ann Surg 1968; 167: 421-426
  • 17 Ben-Mordechay D, Ben-Shlush A, Raviv-Zilka L. et al. Sonographic detection of accessory adrenal tissue in neonates. J Ultrasound Med 2016; 35: 959-963
  • 18 Kempná P, Flück CE. Adrenal gland development and defects. Best Pract Res Clin Endocrinol Metab 2008; 22: 77-93
  • 19 Nickerson PA, Brownie AC, Skelton F. An electron microscopic study of the regenerating adrenal gland during the development of adrenal regeneration hypertension. Am J Pathol 1969; 57: 335
  • 20 Kahri A. Histochemical and electron microscopic studies on the cells of the rat adrenal cortex in tissue culture. Acta Endocrinol 1966; 52: S8-S96
  • 21 Wiesel J. Ueber Compensations-Hypertrophie der accessorischen Nebennieren bei der Ratte. Centr Physiol 1898; XII: 780
  • 22 Karakascheff KI. Weitere Beitrage zur pathologischen Anatomie der Nebennieren. Beitr Pathol 1906; 39: 373
  • 23 Chalmers R, Mashiter K, Joplin G. Residual adrenocortical function after bilateral “total” adrenalectomy for Cushing’s disease. Lancet 1981; 318: 1196-1199
  • 24 Blichert-Toft M, Nielsen MD, Lockwood K. et al. Urinary excretion of corticosterone metabolites in demonstrating the adrenocortical remnant. Brit J Surg 1974; 61: 955-959
  • 25 Gotlieb N, Albaz E, Shaashua L. et al. Regeneration of functional adrenal tissue following bilateral adrenalectomy. Endocrinology 2017; 159: 248-259
  • 26 Speiser PW, Arlt W, Auchus RJ. et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2018; 103: 4043-4088
  • 27 Morris LF, Harris RS, Milton DR. et al. Impact and timing of bilateral adrenalectomy for refractory adrenocorticotropic hormone-dependent Cushing’s syndrome. Surgery 2013; 154: 1174-1183 discussion 1183–1174
  • 28 Friedman T. An update on the overnight dexamethasone suppression test for the diagnosis of Cushing’s syndrome: Limitations in patients with mild and/or episodic hypercortisolism. Exp Clin Endocrinol Diabetes 2006; 114: 356-360
  • 29 Friedman T, Ghods D, Shahinian H. et al. High prevalence of normal tests assessing hypercortisolism in subjects with mild and episodic Cushing’s syndrome suggests that the paradigm for diagnosis and exclusion of Cushing’s syndrome requires multiple testing. Horm Metab Res 2010; 42: 874-881
  • 30 Mojtahedzadeh M, Shaesteh N, Haykani M. et al. Low-dose and standard overnight and low dose-two day dexamethasone suppression tests in patients with mild and/or episodic hypercortisolism. Horm Metab Res 2018; 50: 453-461
  • 31 Berber E, Tellioglu G, Harvey A. et al. Comparison of laparoscopic transabdominal lateral versus posterior retroperitoneal adrenalectomy. Surgery 2009; 146: 621-625 discussion 625–626
  • 32 Lee CR, Walz MK, Park S. et al. A comparative study of the transperitoneal and posterior retroperitoneal approaches for laparoscopic adrenalectomy for adrenal tumors. Ann Surg Oncol 2012; 19: 2629-2634
  • 33 Esoterix Laboratory Sciences I. Cortisol by HPLC with Mass Spectrometry. 2006, Test # 803990
  • 34 Augustine J, Schaffer R, Friedman TC. Successful treatment of adrenal remnant tissue using alcohol ablation in a patient with episodic cushing disease. Endocrine Soc (Abstract) 2011; 93: P2-P650
  • 35 Friedman TC, Ghods DE, Shahinian HK. et al. High prevalence of normal tests assessing hypercortisolism in subjects with mild and episodic Cushing’s syndrome suggests that the paradigm for diagnosis and exclusion of Cushing’s syndrome requires multiple testing. Horm Metab Res 2010; 42: 874-881
  • 36 Sandouk Z, Johnston P, Bunch D. et al. Variability of late-night salivary cortisol in Cushing disease: A prospective study. J Clin Endocrinol Metab 2018; 103: 983-990
  • 37 Petersenn S, Newell-Price J, Findling JW. et al. High variability in baseline urinary free cortisol values in patients with Cushing’s disease. Clin Endocrinol (Oxf) 2014; 80: 261-269
  • 38 Findling JW, Doppman JL. Biochemical and radiologic diagnosis of Cushing’s syndrome. Endocrinol Metab Clin North Am 1994; 23: 511-537
  • 39 Lindsay JR, Nieman LK. Differential diagnosis and imaging in Cushing’s syndrome. Endocrinol Metab Clin North Am 2005; 34: 403-421 x
  • 40 Haioun C, Itti E, Rahmouni A. et al. [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: An early prognostic tool for predicting patient outcome. Blood 2005; 106: 1376-1381
  • 41 Wang W, Macapinlac H, Larson SM. et al. [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 1999; 84: 2291-2302
  • 42 Bell J, Brooker G, Harding BW. ACTH activation of glycolysis in the rat adrenal gland. Biochem Biophys Res Commun 1970; 41: 938-943
  • 43 Crocker MK, Barak S, Millo CM. et al. Use of PET/CT with cosyntropin stimulation to identify and localize adrenal rest tissue following adrenalectomy in a woman with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2012; 97: E2084-E2089
  • 44 Lila AR, Malhotra G, Sarathi V. et al. Localization of remnant and ectopic adrenal tissues with cosyntropin-stimulated 18F-FDG-PET/CT in a patient with Nelson syndrome with persistent hypercortisolism. J Clin Endocrinol Metab 2010; 95: 5172-5173
  • 45 Miles JM, Wahner HW, Carpenter PC. et al. Adrenal scintiscanning with NP-59, a new radioiodinated cholesterol agent. Mayo Clin Proc 1979; 54: 321-327
  • 46 Kazerooni EA, Sisson JC, Shapiro B. et al. Diagnostic accuracy and pitfalls of [iodine-131]6-beta-iodomethyl-19-norcholesterol (NP-59) imaging. J Nucl Med 1990; 31: 526-534
  • 47 Mendichovszky IA. Powlson et al. Targeted Molecular Imaging in Adrenal Disease-An Emerging Role for Metomidate PET-CT. Diagnostics (Basel) 2016; 6: 42
  • 48 Wannachalee T, Turcu AF, Bancos I. et al. The clinical impact of [(68) Ga]-DOTATATE PET/CT for the diagnosis and management of ectopic adrenocorticotropic hormone - secreting tumours. Clin Endocrinol (Oxf) 2019; 91: 288-294
  • 49 Redvanly RD, Chezmar JL, Strauss RM. et al. Malignant hepatic tumors: Safety of high-dose percutaneous ethanol ablation therapy. Radiology 1993; 188: 283-285
  • 50 Shiina S, Tagawa K, Unuma T. et al. Percutaneous ethanol injection therapy for hepatocellular carcinoma. A histopathologic study. Cancer 1991; 68: 1524-1530
  • 51 Curley SA, Izzo F, Delrio P. et al. Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: Results in 123 patients. Ann Surg 1999; 230: 1-8
  • 52 Demolin JM, Eick OJ, Münch K. et al. Soft thrombus formation in radiofrequency catheter ablation. Pacing Clin Electrophysiol 2002; 25: 1219-1222
  • 53 Martirossian A, Jacob R, Riley K et al. A novel approach to ectopic adrenal tissue in Nelson’s Syndrome Endocrine Soc 101: MON-416 (Abstract) 2019
  • 54 Castinetti F, Guignat L, Giraud P. et al. Ketoconazole in Cushing’s disease: Is it worth a try?. J Clin Endocrinol Metab 2014; 99: 1623-1630
  • 55 Cook DM, Loriaux DL. Cushing’s: Medical approach. Curr Ther Endocrinol Metab 1997; 6: 59-62
  • 56 Loose DS, Kan PB, Hirst MA. et al. Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J Clin Invest 1983; 71: 1495-1499
  • 57 Duret C, Daujat-Chavanieu M, Pascussi JM. et al. Ketoconazole and miconazole are antagonists of the human glucocorticoid receptor: consequences on the expression and function of the constitutive androstane receptor and the pregnane X receptor. Mol Pharmacol 2006; 70: 329-339
  • 58 Loose DS, Stover EP, Feldman D. Ketoconazole binds to glucocorticoid receptors and exhibits glucocorticoid antagonist activity in cultured cells. J Clin Invest 1983; 72: 404-408
  • 59 McCance DR, Hadden DR, Kennedy L. et al. Clinical experience with ketoconazole as a therapy for patients with Cushing’s syndrome. Clin Endocrinol (Oxf) 1987; 27: 593-599
  • 60 Kannan CR. The Adrenal Gland. New York: Plenum Medical Book Co. 1988
  • 61 Allolio B, Hahner S, Weismann D. et al. Management of adrenocortical carcinoma. Clin Endocrinol (Oxf) 2004; 60: 273-287
  • 62 Baudry C, Coste J, Bou Khalil R. et al. Efficiency and tolerance of mitotane in Cushing’s disease in 76 patients from a single center. Eur J Endocrinol 2012; 167: 473-481
  • 63 ] Cushing’s Syndrome Redux. Endocrine News: Puzzler Page Sept 2011