Rofo 2021; 193(01): 23-32
DOI: 10.1055/a-1217-7400
Review

Ultraschall 2020 – Diagnostik & Therapie: Auf dem Weg zur multimodalen Sonografie: kontrastverstärkter Ultraschall (CEUS), mikrovaskuläre Dopplerverfahren, Fusionsbildgebung, Sono-Elastografie, interventionelle Sonografie

Artikel in mehreren Sprachen: English | deutsch
Christopher Kloth
1   Department of Interventional and Diagnostic Radiology, University Hospital Ulm, Germany
,
Wolfgang Kratzer
2   Department of Internal Medicine I, University Hospital Ulm, Germany
,
Julian Schmidberger
2   Department of Internal Medicine I, University Hospital Ulm, Germany
,
Meinrad Beer
1   Department of Interventional and Diagnostic Radiology, University Hospital Ulm, Germany
,
Dirk Andre Clevert
3   Department of Clinical Radiology, University Hospital Munich Campus Großhadern, München, Germany
,
Tilmann Graeter
1   Department of Interventional and Diagnostic Radiology, University Hospital Ulm, Germany
› Institutsangaben

Zusammenfassung

Hintergrund Ultraschall als nichtionisierendes bildgebendes Verfahren stellt eines der wichtigsten diagnostischen Verfahren im Klinikalltag dar. Bei weiter Verbreitung findet es flächendeckenden Einsatz. Durch stetige technische Innovationen gewinnen sonografische Verfahren wie kontrastverstärkter Ultraschall (CEUS), Sono-Elastografie, neue mikrovaskuläre Dopplermodalitäten und als Beispiel für interventionelle Verfahren die sonografisch gesteuerte Mikrowellenablation (MWA) zunehmend an Bedeutung innerhalb der bildgebenden Diagnostik und Intervention neben der CT- und MRT-Schnittbildtechnik. Dies erfordert jedoch auch eine höhere Expertise, Spezialisierung und Qualifikation bei den Anwendern.

Methode Dieser Übersichtsartikel informiert über das Spektrum technischer Neuerungen im Ultraschall der letzten Jahre und beschreibt die zugrunde liegende Technik, die klinischen Anwendungsmöglichkeiten und deren diagnostischen Stellenwert. Diese werden unter Darlegung von Vor- und Nachteilen sowie ihrer klinischen Wertigkeit im Kontext der aktuellen Literatur vorgestellt.

Ergebnisse und Schlussfolgerung Die Verfahren des kontrastverstärkten Ultraschalls (CEUS), mikrovaskulärer Dopplermodalitäten, der Fusionsbildgebung und der Elastografie ergänzen den B-Bild-Ultraschall und konventionelle Doppler-Verfahren bei unterschiedlichen Fragestellungen. Die Mikrowellenablation (MWA) hat einen festen Stellenwert als ablatives Verfahren zur lokalen Tumortherapie an verschiedenen Organsystemen und kann ultraschallgesteuert erfolgen. Die Möglichkeiten des Ultraschalls sind dank neuer Entwicklungen heutzutage größer denn je. Die Kenntnis über Technik, Indikationen und Anwendungsmöglichkeiten neuerer Verfahren sind für eine adäquate Patientenversorgung obligat.

Kernaussagen:

  • Kontrastverstärkter Ultraschall (CEUS) steigert die Sensitivität und Spezifität bei der Beurteilung von Parenchymläsionen.

  • CEUS ermöglicht die Darstellung und Quantifizierung der Mikroperfusion. Für größere Gefäße ist CEUS ein wichtiges Instrument in der Endoleak-Diagnostik nach Stent-Versorgung.

  • Mikrovaskuläre Doppler-Verfahren mit Störungsunterdrückungsalgorithmus erlauben eine genauere Darstellung kleinster Gefäße als der reguläre Farb- oder Powerdoppler.

  • Die Elastografie stellt an der Leber bei diffusen Hepatopathien eine nichtinvasive Diagnostik zum Ausschluss einer höhergradigen Fibrose/Zirrhose dar.

  • Die Mikrowellenablation (MWA) bietet auch sonografisch gesteuert die Möglichkeit zur Ablation von Tumoren.

Zitierweise

  • Kloth C, Kratzer W, Schmidberger J et al. Ultrasound 2020 – Diagnostics & Therapy: On the Way to Multimodal Ultrasound: Contrast-Enhanced Ultrasound (CEUS), Microvascular Doppler Techniques, Fusion Imaging, Sonoelastography, Interventional Sonography . Fortschr Röntgenstr 2021; 193: 23 – 32



Publikationsverlauf

Eingereicht: 10. Februar 2020

Angenommen: 21. Juni 2020

Artikel online veröffentlicht:
30. Juli 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Graeter T, Kratzer W, Seufferlein T. et al Evaluation of the value of contrast-enhanced ultrasound (CEUS) within radiology departments in germany. Rofo 2017; 189: 748-759 . doi:10.1055/s-0043-111011
  • 2 Gebündelte Kompetenz statt zergliederter Fuhrpark, Vortrag Prof. T. F. Fischer, Deutsche Röntgengesellschaft. 2016
  • 3 Ferraioli G, Meloni MF. Contrast-enhanced ultrasonography of the liver using SonoVue. Ultrasonography 2018; 37: 25-35 . doi:10.14366/usg.17037
  • 4 Piscaglia F, Bolondi L. Italian Society for Ultrasound in Medicine and Biology (SIUMB) Study Group on Ultrasound Contrast Agents.. The safety of sonovue in abdominal applications: Retrospective analysis of 23188 investigations. Ultrasound Med Biol 2006; 32: 1369-1375 . doi:10.1016/j.ultrasmedbio.2006.05.031
  • 5 Strobel D, Seitz K, Blank W. et al Contrast-enhanced ultrasound for the characterization of focal liver lesions--diagnostic accuracy in clinical practice (DEGUM multicenter trial). Ultraschall in Med 2008; 29: 499-505 . doi:10.1055/s-2008-1027806
  • 6 Thaiss WM, Bedke J, Kruck S. et al Can contrast-enhanced ultrasound and acoustic radiation force impulse imaging characterize CT-indeterminate renal masses? A prospective evaluation with histological confirmation. World J Urol 2019; 37: 1339-1346 . doi:10.1007/s00345-018-2520-3
  • 7 Jäschke M, Weber MA, Fischer C. [CEUS-application possibilities in the musculoskeletal system]. Radiologe 2018; 58: 579-589 . doi:10.1007/s00117-018-0404-6
  • 8 Fischer C, Haug T, Weber MA. et al. Contrast-enhanced ultrasound (CEUS) identifies perfusion differences between tibial fracture unions and non-unions. Ultraschall in Med 2018; DOI: 10.1055/a-0720-1610.
  • 9 Doll J, Gross S, Weber MA. et al The AMANDUS project-advanced microperfusion assessed non-union diagnostics with contrast-enhanced ultrasound (CEUS) for the detection of infected lower extremity non-unions. Ultrasound Med Biol 2019; 45: 2281-2288 . doi:10.1016/j.ultrasmedbio.2019.05.007
  • 10 Marcon J, Trottmann M, Stief CG. et al CEUS-use in testicular pathologies. Radiologe 2018; 58: 57-578 . doi:10.1007/s00117-018-0387-3
  • 11 Rübenthaler J, Reiser M, Cantisani V. et al The value of contrast-enhanced ultrasound (CEUS) using a high-end ultrasound system in the characterization of endoleaks after endovascular aortic repair (EVAR). Clin Hemorheol Microcirc 2017; 66: 283-292 . doi:10.3233/CH-179102
  • 12 Goeral K, Hojreh A, Kasprian G. et al Microvessel ultrasound of neonatal brain parenchyma: Feasibility, reproducibility, and normal imaging features by superb microvascular imaging (SMI). Eur Radiol 2019; 29: 2127-2136 . doi:10.1007/s00330-018-5743-1
  • 13 Jiang ZZ, Huang YH, Shen HL. et al Clinical applications of superb microvascular imaging in the liver, breast, thyroid, skeletal muscle, and carotid plaques. J Ultrasound Med 2019; 38: 2811-2820 . doi:10.1002/jum.15008
  • 14 Dubinsky TJ, Revels J, Wang S. et al Comparison of superb microvascular imaging with color flow and power doppler imaging of small hepatocellular carcinomas. J Ultrasound Med 2018; 37: 2915-2924 . doi:10.1002/jum.14654
  • 15 Sim JK, Lee JY, Hong HS. Differentiation between malignant and benign lymph nodes: Role of superb microvascular imaging in the evaluation of cervical lymph nodes. J Ultrasound Med 2019; 38: 3025-3036 . doi:10.1002/jum.15010
  • 16 Mao Y, Mu J, Zhao J. et al The value of superb microvascular imaging in differentiating benign renal mass from malignant renal tumor: A retrospective study. Br J Radiol 2018; 91: 20170601 . doi:10.1259/bjr.20170601
  • 17 Mu J, Mao Y, Li F. et al Superb microvascular imaging is a rational choice for accurate bosniak classification of renal cystic masses. Br J Radiol 2019; 92: 20181038 . doi:10.1259/bjr.20181038
  • 18 Lu R, Meng Y, Zhang Y. et al Superb microvascular imaging (SMI) compared with conventional ultrasound for evaluating thyroid nodules. BMC Med Imaging 2017; 17: 65 . doi:10.1186/s12880-017-0241-5
  • 19 Gabriel M, Tomczak J, Snoch-Ziółkiewicz M. et al Superb micro-vascular imaging (SMI): A doppler ultrasound technique with potential to identify, classify, and follow up endoleaks in patients after endovascular aneurysm repair (EVAR). Abdom Radiol (NY) 2018; 43: 3479-3486 . doi:10.1007/s00261-018-1633-x
  • 20 Ra JC, Lee ES, Park HJ. et al Efficacy of superb microvascular imaging for diagnosing acute cholecystitis: Comparison with conventional ultrasonography. Ultrasound Med Biol 2018; 44: 1968-1977 . doi:10.1016/j.ultrasmedbio.2018.05.014
  • 21 Park AY, Seo BK, Woo OH. et al The utility of ultrasound superb microvascular imaging for evaluation of breast tumour vascularity: Comparison with colour and power doppler imaging regarding diagnostic performance. Clin Radiol 2018; 73: 304-311 . doi:10.1016/j.crad.2017.10.006
  • 22 Chen J, Chen L, Wu L. et al Value of superb microvascular imaging ultrasonography in the diagnosis of carpal tunnel syndrome: Compared with color doppler and power doppler. Medicine (Baltimore) 2017; 96: e6862 . doi:10.1097/MD.0000000000006862
  • 23 Durmaz MS, Sivri M. Comparison of superb micro-vascular imaging (SMI) and conventional doppler imaging techniques for evaluating testicular blood flow. J Med Ultrason (2001) 2018; 45: 443-452 . doi:10.1007/s10396-017-0847-9
  • 24 Karaca L, Oral A, Kantarci M. et al. Comparison of the superb microvascular imaging technique and the color doppler techniques for evaluating children's testicular blood flow. Eur Rev Med Pharmacol Sci 2016; 20: 1947-1953
  • 25 Jung EM, Clevert DA. [Possibilities of sonographic image fusion: Current developments]. Radiologe 2015; 55: 937-948 . doi:10.1007/s00117-015-0025-2
  • 26 Ewertsen C, Henriksen BM, Torp-Pedersen S. et al Characterization by biopsy or CEUS of liver lesions guided by image fusion between ultrasonography and CT, PET/CT or MRI. Ultraschall in Med 2011; 32: 191-197 . doi:10.1055/s-0029-1245921
  • 27 Okamoto E, Sato S, Sanchez-Siles AA. et al Evaluation of virtual CT sonography for enhanced detection of small hepatic nodules: A prospective pilot study. Am J Roentgenol 2010; 194: 1272-1278 . doi:10.2214/Am J Roentgenol.08.2294
  • 28 Rübenthaler J, Paprottka KJ, Marcon J. et al MRI and contrast enhanced ultrasound (CEUS) image fusion of renal lesions. Clin Hemorheol Microcirc 2016; 64: 457-466 . doi:10.3233/CH-168116
  • 29 Jung EM, Clevert DA. [Contrast-enhanced ultrasound (CEUS) and image fusion for procedures of liver interventions]. Radiologe 2018; 58: 538-544 . doi:10.1007/s00117-018-0411-7
  • 30 Lee MW. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention. Ultrasonography 2014; 33: 227-239 . doi:10.14366/usg.14021
  • 31 Jung EM, Uller W, Stroszczynski C. et al Contrast-enhanced sonography. therapy control of radiofrequency ablation and transarterial chemoembolization of hepatocellular carcinoma. Radiologe 2011; 51: 462-468 . doi:10.1007/s00117-010-2101-y
  • 32 Kang TW, Lee MW, Cha DI. et al Usefulness of virtual expiratory CT images to compensate for respiratory liver motion in Ultrasound/CT image fusion: A prospective study in patients with focal hepatic lesions. Korean J Radiol 2019; 20: 225-235 . doi:10.3348/kjr.2018.0320
  • 33 Maxeiner A, Fischer T, Schwabe J. et al Contrast-Enhanced Ultrasound (CEUS) and Quantitative Perfusion Analysis in Patients with Suspicion for Prostate Cancer. Ultraschall in Med 2019; 40: 340-348 . doi:10.1055/a-0594-2093
  • 34 Chang S, Kim M-J, Kim J. et al Variability of Shear Wave Velocity using Different Frequencies in Acoustic Radiation Force Impulse (ARFI) Elastography: A Phantom and Normal Liver Study. Ultraschall der Medizin – Eur J Ultrasound 2012; 260-265 . doi:10.1055/s-0032-1313008
  • 35 Sporea I, Bota S, Jurchis A. et al Acoustic radiation force impulse and supersonic shear imaging versus transient elastography for liver fibrosis assessment. Ultrasound Med Biol 2013; 39: 1933-1941 . doi:10.1016/j.ultrasmedbio.2013.05.003
  • 36 Bamber J, Cosgrove D, Dietrich CF. et al EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic Principles and Technology. Ultraschall in Med 2013; 34: 169-184 . doi:10.1055/s-0033-1335205
  • 37 Friedrich-Rust M, Nierhoff J, Lupsor M. et al Performance of Acoustic Radiation Force Impulse imaging for the staging of liver fibrosis: A pooled meta-analysis. J Viral Hepat 2012; 19: 212-219 . doi:10.1111/j.1365-2893.2011.01537.x
  • 38 Cassinotto C, Lapuyade B, Mouries A. et al Non-invasive assessment of liver fibrosis with impulse elastography: Comparison of Supersonic Shear Imaging with ARFI and FibroScan® . J Hepatol 2014; 61: 550-557 . doi:10.1016/j.jhep.2014.04.044
  • 39 Piscaglia F, Salvatore V, Mulazzani L. et al Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage. Ultraschall in Med 2016; 37: 1-5 . doi:10.1055/s-0035-1567037
  • 40 Ferraioli G, Wong VW, Castera L. et al Liver Ultrasound Elastography: An Update to the World Federation for Ultrasound in Medicine and Biology Guidelines and Recommendations. Ultrasound Med Biol 2018; 44: 2419-2440 . doi:10.1016/j.ultrasmedbio.2018.07.008
  • 41 Dietrich CF, Bamber J, Berzigotti A. et al EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall in Med 2017; 38: e48 . doi:10.1055/a-0641-0076
  • 42 Gibiino G, Garcovich M, Ainora ME. et al Spleen ultrasound elastography: state of the art and future directions – a systematic review. Eur Rev Med Pharmacol Sci 2019; 23: 4368-4381 . doi:10.26355/eurrev_201905_17944
  • 43 Săftoiu A, Gilja OH, Sidhu PS. et al The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018. Ultraschall in Med 2019; 40: 425-453 . doi:10.1055/a-0838-9937
  • 44 Cho YS, Lim S, Kim Y. et al Spleen Stiffness Measurement Using 2-Dimensional Shear Wave Elastography: The Predictors of Measurability and the Normal Spleen Stiffness Value. J Ultrasound Med 2019; 38: 423-431 . doi:10.1002/jum.14708
  • 45 Kloth C, Fabricius D, Wendlik I. et al Diagnostic accuracy of MRI with MRCP and B-Mode-sonography with elastography of the pancreas in patients with cystic fibrosis: a point-to-point comparison. BMC Res Notes 2019; 12: 150 . doi:10.1186/s13104-019-4193-4
  • 46 Vogl TJ, Nour-Eldin NA, Hammerstingl RM. et al Microwave ablation (MWA): Basics, technique and results in primary and metastatic liver neoplasms – review article. Rofo 2017; 189: 1055-1066 . doi:10.1055/s-0043-117410
  • 47 Facciorusso A, Di Maso M, Muscatiello N. Microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma: A systematic review and meta-analysis. Int J Hyperthermia 2016; 32: 339-344 . doi:10.3109/02656736.2015.1127434
  • 48 Vogl TJ, Panahi B, Albrecht MH. et al Microwave ablation of pancreatic tumors. Minim Invasive Ther Allied Technol 2018; 27: 33-40 . doi:10.1080/13645706.2017.1420664
  • 49 Welch BT, Shah PH, Thompson RH. et al The current status of thermal ablation in the management of T1b renal masses. Int J Hyperthermia 2019; 36: 31-36 . doi:10.1080/02656736.2019.1605097
  • 50 Meijerink MR, Puijk RS, van Tilborg AAJM. et al Radiofrequency and Microwave Ablation Compared to Systemic Chemotherapy and to Partial Hepatectomy in the Treatment of Colorectal Liver Metastases: A Systematic Review and Meta-Analysis. Cardiovasc Intervent Radiol 2018; 41: 1189-1204 . doi:10.1007/s00270-018-1959-3