Klinische Neurophysiologie 2020; 51(04): 201-213
DOI: 10.1055/a-1216-2478
CME-Fortbildung

Review: Optikussonografie – ein update 2020

Optic Nerve Ultrasound – update 2020
Hans-Christian Hansen
,
Knut Helmke

Die Optikus-Sonografie bildet Papille, Sehnerv sowie dessen perineuralenLiquorraum ab und eröffnet damit u. a. einen diagnostischen Zugang zumintrakraniellen Liquorsystem und dessen Druck(ICP). Auf diese Weise lässt sich eine relevante ICP-Erhöhung über 20 mmHg nicht-invasiv und bettseitig belegen. Mit Einzelmessungen und Verlaufskontrollen hilft die Methode u. a. vor und nach der Etablierung eines invasiven ICP-Monitorings in der Intensiv- und Notfallmedizin sowie bei der Beurteilung chronischer Dysregulationen des ICP.

Abstract

B-Scan ultrasound studies of the optic nerve have focused on the perineural subarachnoidal space and the papillary region to provide information about cerebrospinal fluid dynamics. Enlarged and significantly increasing diameters of the optic nerve sheath (ONSD) are characteristic for established or emerging intracranial hypertension, respectively. Though changes of the ONSD appear earlier than papilledema, diagnostic pitfalls and alternative etiologies of enlarged optic discs must be considered. Orbital ultrasound as a repeatable, non-invasive and bedside procedure can be used for screening purposes in emergency medicine as well as for follow-up studies in the intensive care unit. Negative ONSD-findings allow to exclude intracranial hypertension with a specificity of 85% and higher. In this way potentially stressful transports to the MRI- or CT-scanners become redundant and expenses can be saved. Pathologically wide ONSD or progressively enlarging ONSD (more than 0,3 mm) can predict intracranial hypertension and are useful to identify candidates for invasive ICP-monitoring (ONSD ≥ 5mm in adults accompanies ICP>20 mmHg, sensitivity 85–90%). In cases where invasive techniques are inapplicable, serial ONSD measurements can help to monitor the course of increasing ICP. The restitution of abnormally high ICP, however, is not reliably accompanied by a corresponding decline of ONSD, especially once the ICP exceeded 45 mmHg or more.

Our review discusses the progress of optic nerve ultrasound studies since first reports in intensive care patients. Technical aspects, abnormality criteria according to age, physiological factors influencing the ONSD and interesting applications in acute and chronic conditions of ICP dysregulation are discussed.



Publikationsverlauf

Artikel online veröffentlicht:
04. Dezember 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Lang J, Reiter W. Über praktisch ärztlich wichtige Maße des N.opticus, des Chiasma opticum und des Tractus opticus. Gegenbaurs morphologisches Jahrbuch Leipzig 1985; 131: 777-795
  • 2 Helmke K, Hansen HC. Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension. I. Experimental study. Pediatr Radiol 1996; 26: 701-705
  • 3 Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol 1993; 116: 548-556
  • 4 Hansen HC, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg 1997; 87: 34-40
  • 5 Fichtner J, Ulrich CT, Fung C. et al. Management of spontaneous intracranial hypotension – Transorbital ultrasound as discriminator. J Neurol Neurosurg Psychiatry 2016; 87: 650-655
  • 6 Hao J, Pircher A, Miller NR. et al. Cerebrospinal fluid and optic nerve sheath compartment syndrome: A common pathophysiological mechanism in five different cases?. Clin Exp Ophthalmol 2020; 48: 212-219
  • 7 Ballantyne SA, OʼNeill G, Hamilton R. et al. Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur J Ultrasound 2002; 15: 145-149
  • 8 Moretti R, Pizzi B. Optic nerve ultrasound for detection of intracranial hypertension in intracranial hemorrhage patients: confirmation of previous findings in a different patient population. J Neurosurg Anesthesiol 2009; 21: 16-20
  • 9 Lochner P, Leone MA, Coppo L. et al. B-mode transorbital ultrasononography for the diagnosis of acute optic neuritis. A systematic review. Clin Neurophysiol 2016; 127: 803-809
  • 10 Bäuerle J, Lochner P, Kaps M. et al. Intra- and Interobserver Reliability of Sonographic Assessment of the Optic Nerve Sheath Diameter in Healthy Adults. J Neuroimaging 2012; 22: 42-45
  • 11 Helmke K, Hansen HC. Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension. II. Patient study. Pediatr Radiol 1996; 26: 706-710
  • 12 Lochner P, Czosnyka M, Naldi A. et al. Optic nerve sheath diameter: present and future perspectives for neurologists and critical care physicians. Neurol Sci 2019; 40: 2447-2457. DOI: 10.1007/s10072-019-04015-x.
  • 13 Lagrèze WA, Lazzaro A, Weigel M. et al. Morphometry of the retrobulbar human optic nerve: comparison between conventional sonography and ultrafast magnetic resonance sequences. Invest Ophthalmol Vis Sci 2007; 48: 1913-1917
  • 14 Lee SH, Kim HS, Yun SJ. Optic nerve sheath diameter measurement for predicting raised intracranial pressure in adult patients with severe traumatic brain injury: A meta-analysis. J Crit Care 2020; 56: 182-187. doi: 10.1016/j.jcrc.2020.01.006
  • 15 Schroeder C, Katsanos AH, Richter D. et al. Quantification of Optic Nerve and Sheath Diameter by Transorbital Sonography: A Systematic Review and Metaanalysis. J Neuro-imaging 2020; 30: 165-174
  • 16 Soliman I, Johnson GGRJ, Gillman LM. et al. New Optic Nerve Sonography Quality Criteria in the Diagnostic Evaluation of Traumatic Brain Injury. Crit Care Res Pract 2018; 2018: 3589762
  • 17 Hansen HC, Helmke K. The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic nerve sheath. Surg Radiol Anat 1996; 18: 323-328
  • 18 Geeraerts T, Merceron S, Benhamou D. et al. Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med 2008; 34: 2062-2067
  • 19 Rajajee V, Vanaman M, Fletcher JJ. et al. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care 2011; 15: 506-515
  • 20 Sargsyan AE, Blaivas M, Gerraerts T. et al. Ocular ultrasound in the intensive care unit. Lumb P., Karakitsos D.. Critical Care Ultrasound. 2014. Elsevier Saunders Philadephia PA; USA:
  • 21 Gupta S, Pachisia A. Ultrasound measures optic nerve sheath diameter correlates well with CSFP. Neurology India 2019; 67: 772-776
  • 22 Bäuerle J, Nedelmann M. Sonographic assessment of the optic nerve sheath in idiopathic intracranial hypertension. J Neurol 2011; 258: 2014-2019
  • 23 Bhandari D, Udupi Bidkar P, Adinarayanan S. et al. Measurement of changes in optic nerve sheath diameter using ultrasound and computed tomography scan before and after the ventriculoperitoneal shunt surgery in patients with hydrocephalus - A prospective observational trial. Br J Neurosurg 2019; 33: 125-130
  • 24 Hansen HC, Helmke K, Kunze K. Optic nerve sheath enlargement in acute intracranial hypertension. Neuroophthalmology 1994; 14: 345-354
  • 25 Robba C, Santori G, Czosnyka M. et al. Optic nerve sheath diameter measured sono¬graphically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 2018; 44: 1284-1294. DOI: 10.1007/s00134-018-5305-7.
  • 26 Robba C, Donnelly J, Cardim D. et al. Optic nerve sheath diameter ultrasonography at admission as a predictor of intracranial hypertension in traumatic brain injured patients: a prospective observational study. J Neurosurg 2019; 8: 1-7. DOI: 10.3171/2018.11.JNS182077.
  • 27 Lee S, Kim YO, Baek JS. et al. The prognostic value of optic nerve sheath diameter in patients with subarachnoid hemorrhage. Crit Care 2019; 23: 65
  • 28 Lochner P, Fassbender K, Andrejewski A. et al. Sonography of optic nerve sheath diameter identifies patients with middle cerebral artery infarction at risk of a malignant course: a pilot prospective observational study. J Neurol 2020; DOI: 10.1007/s00415-020-09906-0.
  • 29 Chen LM, Wang LJ, Shi L. et al. Reliability of Assessing Non-severe Elevation of Intracranial Pressure Using Optic Nerve Sheath Diameter and Transcranial Doppler Parameters. Front Neurol 2019; 10: 1091
  • 30 Ohle R, McIsaac SM, Woo MY. et al. Sonography of the Optic Nerve Sheath Diameter for Detection of Raised Intracranial Pressure Compared to Computed Tomography: A Systematic Review and Meta-analysis. J Ultrasound Med 2015; 34: 1285-1294
  • 31 Zoerle T, Caccioppola A, D'Angelo E. et al. Optic Nerve Sheath Diameter is not Related to Intracranial Pressure in Subarachnoid Hemorrhage Patients. Neurocrit Care 2020; DOI: 10.1007/s12028-020-00970-y.
  • 32 Robba C, Cardim D, Tajsic T. et al. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: A prospective observational study. PLoS Med 2017; 14: e1002356 DOI: 10.1371/journal.pmed.1002356.
  • 33 Maude RJ, Barkhof F, Hassan MU. et al. Magnetic resonance imaging of the brain in adults with severe falciparum malaria. Malar J 2014; 13: 177
  • 34 Ali MA, Hashmi M, Shamim S. et al. Correlation of Optic Nerve Sheath Diameter With Direct Measurement of Intracranial Pressure Through an External Ventricular Drain. Cureus 2019; 11: e5777
  • 35 Helmke K, Burdelski M, Hansen HC. Detection and monitoring of intracranial pressure dysregulation in liver failure by ultrasound. Transplantation 2000; 70: 392-395
  • 36 Hansen HC, Lagrèze W, Krueger O. et al. Dependence of the Optic Nerve Sheath Diameter on Acutely Applied Subarachnoidal Pressure - An Experimental Ultrasound Study. Acta Ophthalmol 2011; 89: e528-e532
  • 37 Hansen HC, Helmke K. Optic nerve sheath responses to pressure variations. Intensive Care Med 2019; 45: 1840-1841
  • 38 Puanglumyai S, Lekawanvijit S. The importance of optic nerve sheath hemorrhage as a postmortem finding in cases of fatal abusive head trauma: A 13-year study in a tertiary hospital. Forensic Sci Int 2017; 276: 5-11
  • 39 Schlachetzki F, Boy S, Bogdahn U. et al. The retrobulbar “spotsign”-ocular sonography for the differential diagnosis of temporal arteriitis and sudden blindness. Ultraschall Med 2010; 31: 542-544
  • 40 Ertl M, Altmann M, Torka E. et al. The Retrobulbar “Spot Sign” as a Discriminator Between Vasculitic and Thrombo-Embolic Affections of the Retinal Blood Supply. Ultraschall Med 2012; 33: E263-E267
  • 41 Ertl M, Aigner R, Krost M. et al. Measuring Changes in the Optic Nerve Sheath Diameter in Patients With Idiopathic Normal-Pressure Hydrocephalus: A Useful Diagnostic Supplement to Spinal Tap Tests. Eur J Neurol 2017; 24: 461-467
  • 42 Beck J, Ulrich CT, Fung C. et al. Diskogenic microspurs as a major cause of intractable spontaneous intracranial hypotension. Neurology 2016; 87: 1220-1226
  • 43 Mader TH, Gibson CR, Lee AG. Brain Upward Shift and Spaceflight-Associated Neuro-Ocular Syndrome. JAMA Ophthalmol 2019; 137: 586
  • 44 Shinojima A, Kakeya I, Tada S. Association of Space Flight With Problems of the Brain and Eyes. JAMA Ophthalmol 2018; 136: 1075-1076
  • 45 Fagenholz PJ, Gutman JA, Murray AF. et al. Optic Nerve Sheath Diameter Correlates with the Presence and Severity of Acute Mountain Sickness: Evidence for Increased Intracranial Pressure. J Appl Physiol (1985) 2009; 106: 1207-1211