manuelletherapie 2020; 24(04): 193-199
DOI: 10.1055/a-1213-1399
Originalarbeit

Einfluss der passiven Nackenflexion während neurodynamischer Testungen auf die muskuläre Rekrutierung der unteren Extremität

QuerschnittsstudieInfluence of Passive Neck Flexion during Neurodynamic Testing on Muscular Recruitment of the Lower LimbsCross-sectional Study
Kevin Maliszewski
Hochschule Osnabrück, Fakultät Wirtschafts- und Sozialwissenschaften, Physiotherapie und Rehabilitationswissenschaften
,
David Snowdon
Hochschule Osnabrück, Fakultät Wirtschafts- und Sozialwissenschaften, Physiotherapie und Rehabilitationswissenschaften
,
Harry von Piekartz
Hochschule Osnabrück, Fakultät Wirtschafts- und Sozialwissenschaften, Physiotherapie und Rehabilitationswissenschaften
,
Dirk Möller
Hochschule Osnabrück, Fakultät Wirtschafts- und Sozialwissenschaften, Physiotherapie und Rehabilitationswissenschaften
› Author Affiliations

Zusammenfassung

Eine Nackenflexion beeinflusst nachweislich die Mechanosensibilität von neurodynamischen Testungen der unteren Extremität. In der Literatur wird diskutiert, ob sich dieses Phänomen durch eine erhöhte (intraneurale) Spannung des Nervengewebes und/oder einen protektiven Reflexmechanismus des motorischen Systems erklären lässt. Bislang konnte kein protektiver Mechanismus in Form einer modifizierten muskulären Rekrutierung als mechanosensibler Parameter zwischen der passiven Nackenflexion und der unteren Extremität gemessen werden.

Alle in diese Querschnittsstudie eingeschlossenen 30 asymptomatischen, männlichen Probanden führten den neurodynamischen Straight-Leg-Raise-Test und Slump-Test durch. Um einen möglichen Einfluss der passiven Nackenflexion auf die muskuläre Rekrutierung der unteren Extremität festzustellen, wurden während dieser sensibilisierenden Bewegung die muskuläre Rekrutierung und das Bewegungsausmaß mittels Elektromyografie und Inertialsensorik (kinematische Messtechnik) gemessen.

Die Studienergebnisse bestätigten einen segmentübergreifenden Einfluss der passiven Nackenflexion auf die muskuläre Rekrutierung der unteren Extremität. Deren Muster deuten möglicherweise auf einen protektiven muskulären Mechanismus in endgradigen neurodynamischen Positionen hin.

Abstract

Neck flexion has a proven effect on the mechanosensitivity of neurodynamic tests of the lower limb. There has been much discussion in literature whether this phenomenon can be explained by an increased (intraneural) tension of the neural tissue and/or by a protective reflex mechanism of the motor system. Up until now a protective mechanism in terms of a modified muscular recruitment as a mechanosensitive parameter between passive neck flexion and lower limb has not been identified.

All 30 asymptomatic male subjects included in this cross-sectional study performed the neurodynamic straight leg raise test and slump test. In order to determine a possible influence of passive neck flexion on muscular recruitment in the lower limb during this sensitizing movement muscular recruitment and range of motion of the neck flexion were measured by electromyography and an inertial sensor system (kinematic measurement).

The study results substantiated a pan-segmental influence of passive neck flexion on muscular recruitment in the lower limb. Their patterns potentially indicate a protective muscular mechanism in end of range neurodynamic positions.



Publication History

Received: 03 September 2019

Accepted: 17 October 2019

Article published online:
14 September 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Butler DS. Mobilisation des Nervensystems. Berlin: Springer; 1998
  • 2 Westerhuis P, Wiesner R. Klinische Muster in der Manuellen Therapie. Stuttgart: Thieme; 2011
  • 3 Kobayashi S, Shizu N, Suzuki Y. et al. Changes in nerve root motion and intraradicular blood flow during an intraoperative straight-leg-raising test. Spine (Phila Pa 1976) 2003; 28: 1427-1434 DOI: 10.1097/01.BRS.0000067087.94398.35.
  • 4 Morishita Y, Hida S, Naito M. et al. Measurement of the local pressure of the intervertebral foramen and the electrophysiologic values of the spinal nerve roots in the vertebral foramen. Spine (Phila Pa 1976) 2006; 31: 3076-3080 DOI: 10.1097/01.brs.0000249559.96787.d4.
  • 5 Nee RJ, Butler D. Management of peripheral neuropathic pain: integrating neurobiology, neurodynamics, and clinical evidence. Phys Ther Sport 2006; 7: 36-49 doi:10.1016/j.ptsp.2005.10.002
  • 6 Myers RR, Murakami H, Powell HC. Reduced nerve blood flow in edematous neuropathies: a biomechanical mechanism. Microvasc Res 1986; 32: 145-151 doi:10.1016/0026–2862(86)90050–6
  • 7 Rydevik B, Lundborg Gör. Permeability of intraneural microvessels and perineurium following acute, graded experimental nerve compression. Scand J Plast Reconstr Surg 1977; 11: 179-187 doi:10.3109/02844317709025516
  • 8 Balster SM, Jull GA. Upper trapezius muscle activity during the brachial plexus tension test in asymptomatic subjects. Man Ther 1997; 2: 144-149 doi:10.1054/math.1997.0294
  • 9 Van der Heide B, Allison GT, Zusman M. Pain and muscular responses to a neural tissue provocation test in the upper limb. Man Ther 2001; 6: 154-162 doi:10.1054/math.2001.0406
  • 10 Coppieters MW, Alshami AM, Babri AS. et al. Strain and excursion of the sciatic, tibial, and plantar nerves during a modified straight leg raising test. J Orthop Res 2006; 24: 1883-1889 DOI: 10.1002/jor.20210.
  • 11 Boyd BS, Wanek L, Gray AT. et al. Mechanosensitivity of the lower extremity nervous system during straight-leg raise neurodynamic testing in healthy individuals. J Orthop Sports Phys Ther 2009; 39: 780-790 DOI: 10.2519/jospt.2009.3002.
  • 12 Hanney RN, Ridehalgh C, Dawson A. et al. The effects of neurodynamic straight leg raise treatment duration on range of hip flexion and protective muscle activity at P1. J Man Manip Ther 2016; 24: 14-20 DOI: 10.1179/2042618613Y.0000000049.
  • 13 Shacklock MO. Clinical neurodynamics: a new system of musculoskeletal treatment. Reprinted. Edinburgh: Elsevier Butterworth-Heinemann; 2007
  • 14 Lew PC, Briggs CA. Relationship between the cervical component of the slump test and change in hamstring muscle tension. Man Ther 1997; 2: 98-105 doi:10.1054/math.1997.0291
  • 15 McHugh MP, Johnson CD, Morrison RH. The role of neural tension in hamstring flexibility: Neural tension and flexibility. Scand J Med Sci Sports 2012; 22: 164-169 doi:10.1111/j.1600–0838.2010.01180.x
  • 16 Breig A, Marions O. Biomechanics of the lumbosacral nerve roots. Acta Radiol Diagn (Stockh) 1963; 1: 1141-1160 doi:10.1177/028418516300100603
  • 17 Goddard MD, Reid JD. Movements induced by straight leg raising in the lumbo-sacral roots, nerves and plexus, and in the intrapelvic section of the sciatic nerve. J Neurol Neurosurg Psychiatry 1965; 28: 12-18 doi:10.1136/jnnp.28.1.12
  • 18 Breig A. Adverse mechanical tension in the central nervous system: an analysis of cause and effect: relief by functional neurosurgery. Stockholm: Almqvist & Wiksell International; 1974
  • 19 Tencer AF, Allen BL, Ferguson RL. A biomechanical study of thoracolumbar spine fractures with bone in the canal. Part III. Mechanical properties of the dura and its tethering ligaments. Spine (Phila Pa 1976) 1985; 10: 741-747 doi:10.1097/00007632–198510000–00009
  • 20 Silva A, Manso A, Andrade R. et al. Quantitative in vivo longitudinal nerve excursion and strain in response to joint movement: a systematic literature review. Clin Biomech 2014; 29: 839-847 DOI: 10.1016/j.clinbiomech.2014.07.006.
  • 21 Coppieters MW, Stappaerts KH, Wouters LL. et al. Aberrant protective force generation during neural provocation testing and the effect of treatment in patients with neurogenic cervicobrachial pain. J Manipulative Physiol Ther 2003; 26: 99-106 DOI: 10.1067/mmt.2003.16.
  • 22 Szikszay T, Hall T, von Piekartz H. In vivo effects of limb movement on nerve stretch, strain, and tension: a systematic review. J Back Musculoskelet Rehabil 2017; 30: 1171-1186 DOI: 10.3233/BMR-169720.
  • 23 Ganer N. Effect of thoracic spinal manipulation on lower limb neurodynamics in healthy young adults: Neural link to regional interdependence. Int J Health Sci Res 2015; 5: 157-165
  • 24 Norris CM, Matthews M. Inter-tester reliability of a self-monitored active knee extension test. J Bodyw Mov Ther 2005; 9: 256-259 DOI: 10.1016/j.jbmt.2005.06.002.
  • 25 Criswell E. Cram’s introduction to surface electromyography. Sudbury: Jones & Bartlett; 2011
  • 26 Rowe P. Biomechanical measurements including three-dimensional motion analysis systems. In: Rowe P, Kerr A. eds. An introduction to human movement and biomechanics. New York: Elsevier; 2019
  • 27 Bayoumi A, Ashby P. Projections of group Ia afferents to motoneurons of thigh muscles in man. Exp Brain Res 1989; 76: 223-228 DOI: 10.1007/BF00253640.
  • 28 Schünke M, Schulte E, Schumacher U. et al. Prometheus. LernAtlas der Anatomie. Allgemeine Anatomie und Bewegungssystem. Stuttgart: Thieme; 2011
  • 29 Butler D, Gifford L. The concept of adverse mechanical tension in the nervous system. Part 1: testing for “dural tension. ” Physiother 1989; 75: 622-629 doi:10.1016/S0031–9406(10)62374–7
  • 30 Hall T, Zusman M, Elvey R. Adverse mechanical tension in the nervous system? Analysis of straight leg raise. Man Ther 1998; 3: 140-146 doi:10.1016/S1356–689X(98)80004–0
  • 31 Louis R. Dynamique vertébro-radiculaire et vertébro-médullaire. Anat Clin 1981; 3: 1-11 doi:10.1007/BF01557969