Aktuelle Rheumatologie 2020; 45(05): 402-412
DOI: 10.1055/a-1203-1192
Übersichtsarbeit

Physiologie der Schmerzentstehung in der Peripherie

Physiology of Pain Generation in the Periphery
Annett Eitner
1   Klinik für Unfall-, Hand-, Wiederherstellungschirurgie, Universitätsklinikum Jena, Jena
,
Frank Richter
2   Institut für Physiologie 1, Universitätsklinikum Jena, Jena
,
Hans-Georg Schaible
2   Institut für Physiologie 1, Universitätsklinikum Jena, Jena
› Institutsangaben

Zusammenfassung

Dieser Beitrag gibt einen Überblick über den Kenntnisstand zu den Mechanismen der Schmerzentstehung im Gelenk. Er fokussiert sich auf den Vorgang der Nozizeption in nozizeptiven Nervenfasern des Gelenks und stellt dar, wie Krankheitsprozesse im Gelenk auf Nozizeptoren wirken. Während Nozizeptoren im normalen Gelenk eine hohe Erregungsschwelle besitzen und nur durch hochintensive Reize aktiviert werden, kommt es bei Gelenkerkrankungen häufig zu einer Sensibilisierung dieser Nervenfasern, sodass sie bereits auf leichte Reize (Bewegungen, Palpation) ansprechen und nach zentraler Verarbeitung Schmerzempfindungen auslösen. Eine Sensibilisierung wird meistens durch Entzündungsmediatoren ausgelöst, für die die Nozizeptoren Rezeptoren besitzen. Werden Nervenfasern im Erkrankungsprozess geschädigt, können neuropathische Schmerzmechanismen hinzukommen. Chronische Gelenkerkrankungen sind durch entzündliche und destruktive Prozesse charakterisiert. Sowohl bei primären Arthritiden als auch bei Arthrosen sind entzündliche Prozesse für die Sensibilisierung der Nozizeptoren verantwortlich. Dafür werden neben den Prostaglandinen auch proinflammatorische Zytokine und der Nervenwachstumsfaktor (NGF) verantwortlich gemacht, für die viele Nozizeptoren Rezeptoren exprimieren. Demgemäß sind diese Moleküle auch Target innovativer Schmerztherapien, z. B. die Gabe von Antikörpern gegen NGF bei Arthrose. Besonders für die Neutralisation von TNF ist ein direkt schmerzlindernder Effekt nachgewiesen, der aus der Unterbrechung von nozizeptiven Vorgängen am Nozizeptor resultiert. Der direkte pronozizeptive Effekt der Zytokine und Bindungsstellen für Fc-Fragmente von Antikörpern an Nozizeptoren zeigen, dass Immunmechanismen auch für die Schmerzentstehung große Bedeutung haben. Auch destruktive Gelenkprozesse können Schmerzen verursachen. So kann bereits die Osteoklastenaktivität im präklinischen Stadium einer Arthritis Schmerzen verursachen, und nach Ausbruch der Arthritis tragen Destruktionsprozesse zu Schmerzen bei. Inwieweit die Hemmung der Osteoklastenaktivität Gelenkschmerzen lindert, wird derzeit erforscht. Auch weitere neue Ansätze, peripher wirksame Opioide, Cannabinoide und Ionenkanalblocker werden dargestellt. Schließlich geht der Beitrag auf generelle/systemische Faktoren ein, die Krankheitsprozesse im Gelenk und die Schmerzentstehung beeinflussen. Hier wird in erster Linie die Bedeutung des Diabetes mellitus angesprochen. Diese Stoffwechselerkrankung stellt einen Risikofaktor für die Entwicklung von Arthrosen dar, und sie trägt zur Schmerzintensivierung bei. Dabei können verstärkte Entzündungsprozesse und auch neuropathische Schmerzkomponenten beteiligt sein.

Abstract

This review addresses our current knowledge on the mechanisms of pain generation in the joint. It focuses on the process of nociception in nociceptive nerve fibres of the joint and describes how disease processes in the joint act on nociceptors. While nociceptors of the normal joint have a high threshold for excitation and are activated only by stimuli of high intensity, disease processes in the joint often sensitise these nerve fibres such that they respond to stimuli of low intensity (movements, palpation) and, after processing in the central nervous system, elicit pain sensation. Sensitisation is frequently elicited by inflammatory mediators for which nociceptors express receptors. If nerve fibres are damaged during the disease process, neuropathic pain mechanisms may be triggered as well. Chronic joint diseases are characterised by inflammatory and destructive processes. In primary arthritis as well as osteoarthritis, inflammatory processes are responsible for the sensitisation of nociceptors. This process has been attributed to prostaglandins as well as, more recently, to proinflammatory cytokines and the nerve growth factor (NGF). For all of these mediators, receptors are expressed in nociceptors. Accordingly, these molecules are targets of innovative therapies, e. g. the application of antibodies to NGF to treat osteoarthritis pain. In particular, the neutralisation of TNF has been shown to elicit a direct rapid pain-reducing effect resulting from the interruption of nociceptive processes at the nociceptor. The direct pro-nociceptive effect of cytokines and the expression of binding sites for Fc fragments of antibodies in nociceptors show that immune mechanisms are important for the generation of pain. Pain can also be elicited by destructive joint processes. The activity of osteoclasts may elicit pain at the preclinical stage of arthritis, and after the outbreak of manifest arthritis, destructive processes contribute to pain. The extent to which the inhibition of osteoclast activity might alleviate pain is currently being investigated. This review also presents other novel approaches, peripherally acting opioids, cannabinoids and ion channel blockers. Finally, it addresses the importance of general/systemic factors which influence disease processes in the joint and pain generation. In particular, the importance of diabetes mellitus is addressed. This metabolic disease is a risk factor for the development of osteoarthritis and it contributes to pain aggravation, possibly by the involvement of more intense inflammatory processes as well as neuropathic pain components.



Publikationsverlauf

Artikel online veröffentlicht:
25. August 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Miller RE, Block JA, Malfait A-M. What is new in pain modification in osteoarthritis?. Rheumatology 2018; 57: iv99-iv107 doi: 10.1093/rheumatology/kex522
  • 2 Schaible H-G, Grubb BD. Afferent and spinal mechanisms of joint pain. Pain 1993; 55: 5-54. doi: 10.1016/0304-3959(93)90183-p
  • 3 Schaible H-G. Joint pain – Basic mechanisms. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC eds. Wall and Melzack’s Textbook of Pain. Philadelphia: Elsevier Saunders; 2013: 609–619
  • 4 Eitner A, Hofmann GO, Schaible HG. Mechanisms of osteoarthritic pain. Studies in humans and experimental models. Front Mol Neurosci 2017; 10: 349. doi: 10.3389/fnmol.2017.00349
  • 5 Schmelz M, Mantyh P, Malfait A-M. et al. Nerve growth factor antibody for the treatment of osteoarthritis pain and chronic low-back pain: mechanism of action in the context of efficacy and safety. Pain 2019; 160: 2210-2220. DOI: 10.1097/j.pain.0000000000001625.
  • 6 Schaible H-G. Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther 2014; 16: 470
  • 7 Schuelert N, Zhang C, Mogg AJ. et al. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain. Osteoarthritis Cartilage 2010; 18: 1536-1543. DOI: 10.1016/j.joca.2010.09.005.
  • 8 Richter F, Segond von Banchet G, Schaible H-G. Transient Receptor Potential vanilloid 4 ion channel in C-fibres is involved in mechanonociception of the normal and inflamed joint. Sci Rep 2019; 9: 10928. doi: 10.1038/s41598-019-47342-x
  • 9 Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 2013; 14: 461-471. doi: 10.1038/nrn3529
  • 10 Sluka KA, Rasmussen LA, Edgar MM. et al. Acid-sensing ion channel 3 deficiency increases inflammation but decreases pain behavior in murine arthritis. Arthritis Rheum 2013; 65: 1194-1202. DOI: 10.1002/art.37862.
  • 11 Bernier LP, Ase AR, Seguela P. P2X receptor channels in chronic pain pathways. Br J Pharmacol 2018; 175: 2219-2230 doi: 10.1111/bph.13957
  • 12 Eitner A, Pester J, Vogel F. et al. Pain sensation in human osteoarthritic knee joints is strongly enhanced by diabetes mellitus. Pain 2017; 158: 1743-1753. DOI: 10.1097/j.pain.0000000000000972.
  • 13 Barr AJ, Campbell TM, Hopkinson D. et al. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis. Arthritis Res Ther 2015; 17: 228 DOI: 10.1186/s13075-015-0735-x.
  • 14 Natura G, Bär K-J, Eitner A. et al. Neuronal prostaglandin E2 receptor subtype EP3 mediates antinociception during inflammation. PNAS 2013; 110: 13648-13653. DOI: 10.1073/pnas.1300820110.
  • 15 Heppelmann B, Pfeffer A, Schaible H-G. et al. Effects of acetylsalicylic acid (ASA) and indomethacin on single groups III and IV units from acutely inflamed joints. Pain 1986; 26: 337-351
  • 16 Malfait AM, Schnitzer TJ. Towards a mechanism-based approach to pain management in osteoarthritis. Nat Rev Rheumatol 2013; 9: 654-664. doi: 10.1038/nrrheum.2013.138
  • 17 Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine 2014; 70: 185-193. doi: 10.1016/j.cyto.2014.06.019
  • 18 Ebersberger A. The analgesic potential of cytokine neutralization with biologicals. Eur J Pharmacol 2018; 835: 19-30. doi: 10.1016/j.ejphar.2018.07.040
  • 19 McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007; 7: 429-442. doi: 10.1038/nri2094
  • 20 Rein P, Mueller RB. Treatment with biologicals in rheumatoid arthritis: an overview. Rheumatol Ther 2017; 4: 247-261. doi: 10.1007/s40744-017-0073-3
  • 21 Hess A, Axmann R, Rech J. et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. PNAS 2011; 108: 3731-3736. DOI: 10.1073/pnas.1011774108.
  • 22 Boettger MK, Hensellek S, Richter F. et al. Antinociceptive effects of TNF-α neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum 2008; 58: 2368-2378. DOI: 10.1002/art.23608.
  • 23 Ebbinghaus M, Müller S, Segond von Banchet G. et al. The contribution of inflammation and bone destruction to pain in arthritis – a study in murine glucose-6-phosphate isomerase (G6PI)-induced arthritis. Arthritis Rheumatol. 2019; 71: 2016-2026 DOI: 10.1002/art.41051.
  • 24 Scanzello CR. Chemokines and inflammation in osteoarthritis: Insights from patients and animal models. J Orthop Res 2017; 35: 735-739. doi: 10.1002/jor.23471
  • 25 Wang JG, Strong JA, Xie W. et al. The chemokine CXCL1/growth related oncogene increases sodium currents and neuronal excitability in small diameter sensory neurons. Mol Pain 2008; 4: 38. DOI: 10.1186/1744-8069-4-38.
  • 26 Kao D-J, Li AH, Chen J-C. et al. CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Nav 1.8 sodium channels in dorsal root ganglion neurons. J Neuroinflammation 2012; 9: 189. DOI: 10.1186/1742-2094-9-189.
  • 27 Cuellar JM, Scuderi GJ, Cuellar VG. et al. Diagnostic utility of cytokine biomarkers in the evaluation of acute knee pain. J Bone Joint Surg Am 2009; 91: 2313-2320. DOI: 10.2106/JBJS.H.00835.
  • 28 Li L, Jiang BE. Serum and synovial fluid chemokine ligand 2/monocyte chemoattractant protein 1 concentrations correlates with symptomatic severity in patients with knee osteoarthritis. Ann Clin Biochem 2015; 52: 276-282. doi: 10.1177/0004563214545117
  • 29 Jiang H, Shen X, Chen Z. et al. Nociceptive neuronal Fc-gamma receptor I is involved in IgG immune complex induced pain in the rat. Brain Behav Immun 2017; 62: 351-361. DOI: 10.1016/j.bbi.2017.03.001.
  • 30 Dawes JM, Weir GA. et al. , Middleton Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability. Neuron 2018; 97: 806-822. DOI: 10.1016/j.neuron.2018.01.033.
  • 31 Bersellini Farinotti A, Wigerblad G, Nascimento D. et al. Cartilage-binding antibodies induce pain through immune complex-mediated activation of neurons. J Exp Med 2019; 216: 1904-1924 DOI: 10.1084/jem.20181657.
  • 32 Catrina AI, Svensson CI, Malmström V. et al. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nat Rev Rheumatol 2017; 13: 79-86. DOI: 10.1038/nrrheum.2016.200.
  • 33 Bonabello A, Galmozzi MR, Bruzzese T. et al. Analgesic effect of bisphosphonates in mice. Pain 2001; 91: 269-275. DOI: 10.1016/s0304-3959(00)00447-4.
  • 34 Sagar DR, Ashraf S, Xu L. et al. Osteoprotegerin reduces the development of pain behaviour and joint pathology in a model of osteoarthritis. Ann Rheum Dis 2014; 73: 1558-1565 DOI: 10.1136/annrheumdis-2013-203260.
  • 35 Bedson J, Croft PR. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord 2008; 9: 116. doi: 10.1186/1471-2474-9-116
  • 36 Lane NE, Schnitzer TJ, Birbara CA. et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med 2010; 363: 1521-1531. DOI: 10.1056/NEJMoa0901510.
  • 37 Bennett D. NGF, sensitization of nociceptors. In: Schmidt RF, Willis WD eds. Encyclopedia of Pain. Berlin, Heidelberg, New York, Tokyo: Springer; 2007: 1338–1342
  • 38 Inglis JJ, McNamee KE, Chia S-L. et al. Regulation of pain sensitivity in experimental osteoarthritis by the endogenous peripheral opioid system. Arthritis Rheum 2008; 58: 3110-3119. DOI: 10.1002/art.23870.
  • 39 Roger MW, Wilder FV. The association of BMI and knee pain among persons with radiographic knee osteoarthritis: A cross-sectional study. BMC Musculoskelet Disord 2008; 9: 163 doi: 10.1186/1471-2474-9-163
  • 40 Schett G, Kleyer A, Perricone C. et al. Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care 2013; 36: 403-409 DOI: 10.2337/dc12-0924.
  • 41 Bierhaus A, Fleming T, Stoyanov S. et al. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat Med 2012; 18: 926-933 DOI: 10.1038/nm.2750.
  • 42 Pitsavos C, Tampourlou M, Pangiotakos DB. et al. Association between low-grade systemic inflammation and type 2 diabetes mellitus among men and women from the ATTICA study. Rev Diabetic Stud 2007; 4: 98-104. DOI: 10.1900/RDS.2007.4.98.
  • 43 Messier SP, Loeser RF, Miller GD. et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the Arthritis, Diet, and Activity Promotion Trial. Arthritis Rheum 2004; 50: 1501-1510 DOI: 10.1002/art.20256.
  • 44 Ganz ML, Wintfeld N, Li Q. et al. The association of body mass index with the risk of type 2 diabetes: a case-control study nested in an electronic health records system in the United States. Diabet Metab Syndrome 2014; 6: 50 DOI: 10.1186/1758-5996-6-50.
  • 45 Magnusson K, Hagen KB, Osteras N. et al. Diabetes is associated with increased hand pain in erosive hand osteoarthritis: data from a population-based study. Arthritis Care Res 2015; 67: 187-195. DOI: 10.1002/acr.22460.
  • 46 Rajamäki TJ, Jämsen E, Puolakka PA. et al. Diabetes is associated with persistent pain after hip and knee replacement. Acta Orthop 2015; 86: 586-593. DOI: 10.3109/17453674.2015.1044389.
  • 47 Said G. Diabetic neuropathy – a review. Nat Clin Pract Neurol 2007; 3: 331-340 doi: 10.1038/ncpneuro0504
  • 48 Kaur S, Pandhi P, Dutta P. Painful diabetic neuropathy: an update. Ann Neurosci 2011; 18: 168-175. doi: 10.5214/ans.0972-7531.1118409
  • 49 Zhang W, Randell EW, Sun G. et al. Hyperglycemia-related advanced glycation end-products is associated with the altered phosphatidylcholine metabolism in osteoarthritis patients with diabetes. Plos One 2017; 12: e0184105 DOI: 10.1371/journal.pone.0184105.
  • 50 Daϊen CI, Sellam J. Obesity and inflammatory arthritis: impact on occurrence, disease characteristics and therapeutic response. RMD Open 2015; 1: e000012 doi: 10.1136/rmdopen-2014-000012