Handchir Mikrochir Plast Chir 2020; 52(06): 533-544
DOI: 10.1055/a-1200-1189
Originalarbeit

Eignung biologischer azellulärer dermaler Matrices als Hautersatz

Suitability of biological acellular dermal matrices as a skin replacement
Marcin Specht
1   Klinikum Bremen-Mitte gGmbH Plastisc, Reconstructive and Aesthetic Surgery
,
Sorge Kelm
2   University of Bremen CBIB, Faculty of Biology and Biochemistry
,
Ursula Mirastschijski
2   University of Bremen CBIB, Faculty of Biology and Biochemistry
3   Mira-Beau gender esthetics, Berlin
› Author Affiliations

Zusammenfassung

Einleitung Bei Gewebedefekten können epidermale und dermale Anteile der Haut verloren gehen. Häufig ist eine reduzierte Gewebeelastizität, ggf. mit Narbenkontrakturen, die die Gelenkbeweglichkeit einschränken können, die Folge. Artifizielle Kollagenmatrices und humane azelluläre dermale Matrices (ADM) stellen ein neues Verfahren der kutanen Rekonstruktion vor allem in der Verbrennungsmedizin dar.

Zielsetzung Ziel dieser Studie war es, die Eignung von ADM als dermalen Ersatz zu untersuchen. Hierbei wurden die zelluläre Migration und Differenzierung sowie die inflammatorische Reaktion auf verschiedene Matrices in einem etablierten Hautorgankulturmodell ex vivo untersucht.

Material und Methoden Reste von vitalen, operativ entnommenen Spalthauttransplantaten wurden auf humane ADM (Epiflex), deepidermalisierte humane Dermis (DED) oder artifizielle Kollagen-Elastin Matrix (KEM, Matriderm) transferiert und das epitheliale Resurfacing in einem standardisierten Wundmodell an der Luft-Feuchtigkeitsgrenze untersucht. Um den Einfluss unterschiedlicher dermaler Anteile auf das epitheliale Verhalten zu untersuchen, wurde zudem die Migration auf ADM aus papillären mit retikulären Dermisanteilen verglichen. Die Reepithelialisierung und zelluläre inflammatorische Reaktion wurden histologisch, immunhistochemisch und biochemisch analysiert.

Ergebnisse und Schlussfolgerung Die größte epitheliale Ausbreitung und Differenzierung fand auf DED (2,54 mm ± 0,43 mm, Mittelwert ± SEM) im Vergleich zu ADM (1,32 mm ± 0,44 mm, p < 0,09) oder KEM (0,77 mm ± 0,11 mm, p < 0,02) statt, was unter anderem auf promigratorische Basalmembranreste auf DED zurückzuführen ist. Die keratinozytäre Migration war deutlich größer auf papillärer ADM im Vergleich zu retikulärer ADM. Im Gegensatz zu den biologischen Matrices fand sich in der grobporigen KEM nur eine horizontale Durchwanderung des Gewebes. Die Expression proinflammatorischer Mediatoren unterschied sich je nach Hautdonor und Matrix.

Zusammenfassend ist festzustellen, dass die Struktur und Herkunft der dermalen Matrix von großer Bedeutung für die Reepithelialiserung und inflammatorische zelluläre Reaktion sind.

Abstract

Introduction Tissue defects are associated with loss of epidermal and dermal components of the skin. For full-thickness tissue defects, dermal equivalents are useful to enable rapid wound closure. Split-thickness skin grafts are associated with loss of tissue elasticity resulting in scar contractures that can impair joint mobility. Synthetic collagen matrices and allogeneic acellular dermal matrices (ADM) are commercially available and could serve as skin tissue replacement. The aim of this study was to investigate whether ADM of different dermal layers or bioartificial matrices can serve as cutaneous replacement. For this purpose, cellular migration, differentiation and the inflammatory reaction were studied in an established ex vivo skin organ model.

Materials and Methods Human split-thickness skin grafts were transplanted onto ADM (Epiflex, DIZG, Berlin, Germany), de-epidermized dermis (DED) or an artificial collagen-elastin matrix (Matriderm, Dr. Suwelack, Billerbeck, Germany). Epithelial migration was studied using an established skin culture model at the air-liquid interface. In addition, the effect of tissue from different dermal compartments, e. g. papillar and reticular dermis, on epithelial migration was compared. Epithelial resurfacing and differentiation of matrices as well as the inflammatory reaction were studied using histological, immunohistochemical and biochemical analyses.

Results and Conclusion Significantly more epithelial outgrowth area was found on DED (2.54 mm ± 0.43 mm, mean ± SEM) compared to papillary ADM (1.32 mm ± 0.44 mm, p = 0.039), to reticular ADM (no horizontal growth, p < 0.0001) and collagen-elastin matrix (0.78 mm ± 0.11 mm, p = 0.0056) measured by fluorescence microscopy over 10 days presumably due to the presence of pro-migratory basement membrane residues on DED. Reepithelialization was significantly higher (p < 0.002) on papillary dermis compared to ADM of reticular origin. In contrast to the biological matrices, a complete horizontal penetration was found in the macroporous collagen-elastin matrix. Pro-inflammatory mediators varied depending on the human skin donor and matrix. In summary, the biochemical structure of the matrix’ surface and its origin influenced the epithelial behaviour with regard to migration, differentiation and inflammatory response.



Publication History

Received: 15 February 2020

Accepted: 12 May 2020

Article published online:
30 July 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Stella M, Castagnoli C, Gangemi EN. Postburn scars: an update. Int J Low Extrem Wounds 2008; 7: 176-181
  • 2 van der Wal MB, Vloemans JF, Tuinebreijer WE. et al. Outcome after burns: an observational study on burn scar maturation and predictors for severe scarring. Wound Repair Regen 2012; 20: 676-687
  • 3 German Burn Association DGV Burn statistics. http://www.verbrennungsmedizin.de/statistik.php Stand: Jan 2020
  • 4 Mirastschijski U, Sander JT, Weyand B. et al. Rehabilitation of burn patients: an underestimated socio-economic burden. Burns 2013; 39: 262-268
  • 5 Mirastschijski U, Sander JT, Zier U. et al. The cost of post-burn scarring. Annals of burns and fire disasters 2015; 28: 215-222
  • 6 Ryssel H, Gazyakan E, Germann G. et al. The use of MatriDerm in early excision and simultaneous autologous skin grafting in burns – a pilot study. Burns : journal of the International Society for Burn Injuries 2008; 34: 93-97
  • 7 Rossner E, Smith MD, Petschke B. et al. Epiflex((R)) a new decellularised human skin tissue transplant: manufacture and properties. Cell and tissue banking 2011; 12: 209-217
  • 8 Mirastschijski U, Bugdahl R, Rollman O. et al. Epithelial regeneration from bioengineered skin explants in culture. Br J Dermatol 2006; 154: 42-49
  • 9 Mirastschijski U, Kerzel C, Schnabel R. et al. Complete horizontal skin cell resurfacing and delayed vertical cell infiltration into porcine reconstructive tissue matrix compared to bovine collagen matrix and human dermis. Plast Reconstr Surg 2013; 132: 861-869
  • 10 Mirastschijski U, Schwab I, Coger V. et al. Lung surfactant accelerates skin wound healing: a translational study from in vitro and in vivo experiments to a clinical phase I trial. Scientific reports 2020; DOI: 1-20
  • 11 Mirastschijski U, Dinesh N, Baskaran S. et al. Novel specific human and mouse stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10) antibodies for biochemical and immunohistochemical analyses. Wound Repair Regen 2019; 27: 309-323
  • 12 Correa-Gallegos D, Jiang D, Christ S. et al. Patch repair of deep wounds by mobilized fascia. Nature 2019; 576: 287-292
  • 13 Agren MS, Mirastschijski U, Karlsmark T. et al. Topical synthetic inhibitor of matrix metalloproteinases delays epidermal regeneration of human wounds. Exp Dermatol 2001; 10: 337-348
  • 14 Mirastschijski U, Haaksma CJ, Tomasek JJ. et al. Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds. Exp Cell Res 2004; 299: 465-475
  • 15 Mirastschijski U, Impola U, Karsdal MA. et al. Matrix metalloproteinase inhibitor BB-3103 unlike the serine proteinase inhibitor aprotinin abrogates epidermal healing of human skin wounds ex vivo. The Journal of investigative dermatology 2002; 118: 55-64
  • 16 Saarialho-Kere UK, Pentland AP, Birkedal-Hansen H. et al. Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds. The Journal of clinical investigation 1994; 94: 79-88
  • 17 Mirastschijski U, Lupse B, Maedler K. et al. Matrix Metalloproteinase-3 is Key Effector of TNF-alpha-Induced Collagen Degradation in Skin. International journal of molecular sciences 2019; 20
  • 18 Rechardt O, Elomaa O, Vaalamo M. et al. Stromelysin-2 is upregulated during normal wound repair and is induced by cytokines. The Journal of investigative dermatology 2000; 115: 778-787
  • 19 Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Disease models & mechanisms 2014; 7: 193-203
  • 20 Murray MY, Birkland TP, Howe JD. et al. Macrophage migration and invasion is regulated by MMP10 expression. PLoS One 2013; 8: e63555
  • 21 Kim JP, Chen JD, Wilke MS. et al. Human keratinocyte migration on type IV collagen. Roles of heparin-binding site and alpha 2 beta 1 integrin. Lab Invest 1994; 71: 401-408
  • 22 Spirito F, Chavanas S, Prost-Squarcioni C. et al. Reduced expression of the epithelial adhesion ligand laminin 5 in the skin causes intradermal tissue separation. The Journal of biological chemistry 2001; 276: 18828-18835
  • 23 Elkhal A, Tunggal L, Aumailley M. Fibroblasts contribute to the deposition of laminin 5 in the extracellular matrix. Exp Cell Res 2004; 296: 223-230
  • 24 Giannelli G, Falk-Marzillier J, Schiraldi O. et al. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 1997; 277: 225-228
  • 25 Nyman E, Henricson J, Ghafouri B. et al. Hyaluronic Acid Accelerates Re-epithelialization and Alters Protein Expression in a Human Wound Model. Plastic and reconstructive surgery Global open 2019; 7: e2221
  • 26 Sierra-Sanchez A, Fernandez-Gonzalez A, Lizana-Moreno A. et al. Hyaluronic acid biomaterial for human tissue engineered skin substitutes: Preclinical comparative in vivo study of wound healing. Journal of the European Academy of Dermatology and Venereology : JEADV 2020; DOI: 10.1111/jdv.16342.
  • 27 Steffensen B, Hakkinen L, Larjava H. Proteolytic events of wound-healing – coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. Crit Rev Oral Biol Med 2001; 12: 373-398
  • 28 Ågren MS, Taplin CJ, Woessner JF Jr.. et al. Collagenase in wound healing: effect of wound age and type. The Journal of investigative dermatology 1992; 99: 709-714
  • 29 Mirastschijski U, Impola U, Jahkola T. et al. Ectopic localization of matrix metalloproteinase-9 in chronic cutaneous wounds. Human pathology 2002; 33: 355-364
  • 30 Agren MS, Schnabel R, Christensen LH. et al. Tumor necrosis factor-alpha-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. Eur J Cell Biol 2015; 94: 12-21
  • 31 Kaur P, Carter WG. Integrin expression and differentiation in transformed human epidermal cells is regulated by fibroblasts. Journal of cell science 1992; 103 Pt 3 755-763
  • 32 El Ghalbzouri A, Jonkman MF, Dijkman R. et al. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. The Journal of investigative dermatology 2005; 124: 79-86
  • 33 Fenner J, Clark RAF. Anatomy, physiology, histology, and immunohistochemistry of human skin. Albanna MZ, Holmes JHI. Hrsg. Skin Tissue Engineering and Regenerative Medicine. Amsterdam: Elsevier; 2016: 1-17
  • 34 Ventre M, Mollica F, Netti PA. The effect of composition and microstructure on the viscoelastic properties of dermis. J Biomech 2009; 42: 430-435
  • 35 Golinski PA, Zoller N, Kippenberger S. et al. Development of an engraftable skin equivalent based on matriderm with human keratinocytes and fibroblasts. Handchir Mikrochir Plast Chir 2009; 41: 327-332
  • 36 Bottcher-Haberzeth S, Biedermann T, Schiestl C. et al. Matriderm(R) 1 mm versus Integra(R) Single Layer 1.3 mm for one-step closure of full thickness skin defects: a comparative experimental study in rats. Pediatr Surg Int 2012; 28: 171-177
  • 37 Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. The Journal of investigative dermatology 2007; 127: 514-525
  • 38 Tseng HC, Lee IT, Lin CC. et al. IL-1beta promotes corneal epithelial cell migration by increasing MMP-9 expression through NF-kappaB- and AP-1-dependent pathways. PLoS One 2013; 8: e57955
  • 39 Raja. Sivamani K, Garcia MS. et al. Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front Biosci 2007; 12: 2849-2868
  • 40 Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83: 835-870
  • 41 Jiang WG, Sanders AJ, Ruge F. et al. Influence of interleukin-8 (IL-8) and IL-8 receptors on the migration of human keratinocytes, the role of PLC-gamma and potential clinical implications. Exp Ther Med 2012; 3: 231-236
  • 42 Rennekampff HO, Hansbrough JF, Kiessig V. et al. Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 2000; 93: 41-54
  • 43 Tuschil A, Lam C, Haslberger A. et al. Interleukin-8 stimulates calcium transients and promotes epidermal cell proliferation. The Journal of investigative dermatology 1992; 99: 294-298
  • 44 Iocono JA, Colleran KR, Remick DG. et al. Interleukin-8 levels and activity in delayed-healing human thermal wounds. Wound Repair Regen 2000; 8: 216-225
  • 45 Lan CC, Wu CS, Huang SM. et al. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing. Diabetes 2013; 62: 2530-2538
  • 46 Kleinbeck KR, Faucher LD, Kao WJ. Biomaterials modulate interleukin-8 and other inflammatory proteins during reepithelialization in cutaneous partial-thickness wounds in pigs. Wound Repair Regen 2010; 18: 486-498