Diabetologie und Stoffwechsel 2020; 15(04): 317-326
DOI: 10.1055/a-1197-6223
Übersicht

Metabolische Wirkungen und kardiovaskuläre Sicherheit einer oralen Dreifachtherapie des Typ-2-Diabetes: das Beispiel Metformin, Empagliflozin und Linagliptin

Metabolic effects and cardiovascular safety of an oral triple therapy of type 2 diabetes: the metformin, empagliflozin, linagliptin example
Baptist Gallwitz
1   Department Innere Medizin, Abt. IV, Diabetologie, Endokrinologie & Nephrologie, Eberhard-Karls-Universität Tübingen, Medizinische Fakultät, Tübingen, Germany
,
Roland Schmieder
2   Medizinische Klinik 4, Universitätsklinikum Erlangen, Germany
› Institutsangaben

Zusammenfassung

Basierend auf neuen Erkenntnissen und Leitlinien wird die orale Dreifachtherapie des Typ-2-Diabetes am Beispiel der Kombination aus Metformin, Empagliflozin und Linagliptin diskutiert. Der SGLT-2-Hemmstoff Empagliflozin verbessert im Vergleich zu Placebo den kombinierten Endpunkt aus kardiovaskulärem Tod oder nicht tödlichem Myokardinfarkt oder Schlaganfall (MACE-3) und reduziert die Wahrscheinlichkeit einer Klinikaufnahme wegen Herzinsuffizienz sowie die Gesamtsterblichkeit. Eine neu auftretende oder sich verschlechternde Nephropathie wird ebenfalls seltener beobachtet. Der DPP-4-Hemmstoff Linagliptin senkt Blutzucker und HbA1c und hat keine Wirkungen auf den kardiovaskulären Endpunkt MACE-3, während die Progression der Albuminurie im Vergleich zu Placebo vermindert wird. Im Vergleich zum Sulfonylharnstoff Glimepirid sind die kardiovaskulären Wirkungen ähnlich, Hypoglykämien aber deutlich seltener. Die Kombination des insulinotropen Linagliptin mit dem insulinunabhängigen Glukose ausscheidenden Wirkprinzip von Empagliflozin verbessert im Vergleich zu Placebo bei mit Metformin unzureichend behandelten Patienten die metabolische Situation. Bei solchen Patienten ist die Fixkombination aus Empagliflozin und Linagliptin die erste, bei der Langzeitwirkungen der Einzelkomponenten in drei kardiovaskulären Endpunktstudien bestätigt wurden.

Abstract

Based on new evidence and guidelines we discuss the triple therapy of type 2 diabetes using the example of a combination of metformin, empagliflozin and linagliptin. The SGLT-2 inhibitor empagliflozin improves the combined endpoint of cardiovascular death, non-fatal myocardial infarction and stroke (MACE-3) compared to placebo and reduces the incident probability of hospitalization due to heart failure as well as overall mortality. A newly occurring or deteriorating nephropathy is also observed less frequently. The DPP-4 inhibitor linagliptin lowers blood glucose and HbA1c and has no effects on the cardiovascular endpoint MACE-3, but reduces the progression of albuminuria as compared to placebo. In comparison to the sulfonylurea glimepiride cardiovascular outcomes are similar, but hypoglycemia is much less frequent. The combination of the insulinotropic linagliptin and the insulin-independent, glucosuric empagliflozin improves the metabolic function as compared to placebo in patients who are insufficiently treated with metformin. In such patients the fixed combination of empagliflozin and linagliptin is the first for which three long-term outcome studies have demonstrated metabolic, cardiovascular and renal effects.



Publikationsverlauf

Eingereicht: 12. Mai 2020

Angenommen: 08. Juni 2020

Artikel online veröffentlicht:
01. Juli 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Davies MJ, D’Alessio DA, Fradkin J. et al Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018; 61: 2461-2498 . doi:10.1007/s00125-018-4729-5
  • 2 Landgraf R, Aberle J, Birkenfeld AL. et al Therapie des Typ-2-Diabetes. Diabetologie und Stoffwechsel 2019; 14 (Suppl. 02) S167-S187 . doi:10.1055/a-0898-9617
  • 3 Riddle MC, Gerstein HC, Holman RR. et al A1C targets should be personalized to maximize benefits while limiting risks. Diabetes Care 2018; 41: 1121-1124 . doi:10.2337/dci18-0018
  • 4 Mendes D, Alves C, Batel-Marques F. Number needed to harm in the post-marketing safety evaluation: results for rosiglitazone and pioglitazone. Pharmacoepidemiol Drug Saf 2015; 24: 1259-1270 . doi:10.1002/pds.3874
  • 5 Buse JB, Wexler DJ, Tsapas A. et al 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020; 63: 221-228 . doi:10.1007/s00125-019-05039-w
  • 6 Michel MC, Mayoux E, Vallon V. A comprehensive review of the pharmacodynamics of the SGLT-2 inhibitor empagliflozin in animals and humans. Naunyn Schmiedebergs Arch Pharmacol 2015; 388: 801-816 . doi:10.1007/s00210-015-1134-1
  • 7 Scheen AJ. Pharmaokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet 2014; 53: 213-225 . doi:10.1007/s40262-013-0126-x
  • 8 Chawla G, Chaudhary KK. A complete review of empagliflozin: Most specific and potent SGLT-2 inhibitor used for the treatment of type 2 diabetes mellitus. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2019; 13: 2001-2008 . doi:10.1016/j.dsx.2019.04.035
  • 9 Zhang Y-J, Han S-L, Sun X-F. et al Efficacy and safety of empagliflozin for type 2 diabetes mellitus: Meta-analysis of randomized controlled trials. Medicine 2018; 97: e12843-e12843 . doi:10.1097/MD.0000000000012843
  • 10 Frampton JE. Empagliflozin: a review in type 2 diabetes. Drugs 2018; 78: 1037-1048 . doi:10.1007/s40265-018-0937-z
  • 11 Gallwitz B, Merker L, Hohberg C. et al Empagliflozin – Insulinunabhängige Kontrolle der Glykämieparameter bei Diabetes mellitus Typ 2 durch Inhibition des Natrium-Glukose-Cotransporters SGLT-2. Diabetologie und Stoffwechsel 2015; 10: 247-265 . doi:10.1055/s-0041-107247
  • 12 Seufert J, Laubner K. Neue Antidiabetika und kardiovaskuläre Outcome-Studien. Diabetologie und Stoffwechsel 2017; 12: 273-285 . doi:10.1055/s-0042-121159
  • 13 Zinman B, Wanner C, Lachin JM. et al Empagliflozin, cardiovascular outcomes and mortality in type 2 diabetes. N Engl J Med 2015; 373: 2117-2128 . doi:10.1056/NEJMoa1504720
  • 14 Fitchett D, Zinman B, Wanner C. et al Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J 2016; 37: 1526-1534 . doi:10.1093/eurheartj/ehv728
  • 15 Savarese G, Sattar N, Januzzi J. et al Empagliflozin Is ssociated with a lower risk of post-acute heart failure rehospitalization and mortality. Circulation 2019; 139: 1458-1460 . doi:10.1161/CIRCULATIONAHA.118.038339
  • 16 Striepe K, Jumar A, Ott C. et al Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with zype 2 diabetes mellitus. Circulation 2017; 136: 1167-1169 . doi:10.1161/CIRCULATIONAHA.117.029529
  • 17 Bosch A, Ott C, Jung S. et al How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol 2019; 18: 44-44 . doi:10.1186/s12933-019-0839-8
  • 18 Verma S, Mazer CD, Yan AT. et al Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease. Circulation 2019; 140: 1693-1702 . doi:10.1161/CIRCULATIONAHA.119.042375
  • 19 Oshima H, Miki T, Kuno A. et al Empagliflozin, an SGLT-2 inhibitor, reduced the mortality rate after acute myocardial infarction with modification of cardiac metabolomes and antioxidants in diabetic rats. J Pharmacol Exp Ther 2019; 368: 524-534 . doi:10.1124/jpet.118.253666
  • 20 Santos-Gallego CG, Requena-Ibanez JA, San Antonio R. et al Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol 2019; 73: 1931-1944 . doi:10.1016/j.jacc.2019.01.056
  • 21 Steven S, Oelze M, Hanf A. et al The SGLT-2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biology 2017; 13: 370-385 . doi:10.1016/j.redox.2017.06.009
  • 22 García-Ropero Á, Santos-Gallego CG, Badimon JJ. The anti-inflammatory effects of SGLT inhibitors. Aging 2019; 11: 5866-5867 . doi:10.18632/aging.102175
  • 23 Wanner C, Inzucchi SE, Lachin JM. et al Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016; 375: 323-334 . doi:10.1056/NEJMoa1515920
  • 24 Younis FM, Leor J, Abassi Z. et al Beneficial effect of the SGLT-2 inhibitor empagliflozin on glucose homeostasis and cardiovascular parameters in the Cohen Rosenthal Diabetic Hypertensive (CRDH) rat. J Cardiovasc Pharmacol Ther 2018; 23: 358-371 . doi:10.1177/1074248418763808
  • 25 Murphy S, Wu W, White T. et al. Renoprotective effects of empagliflozin in type 1 and type 2 models of diabetic nephropathy with hypertension. Diabetes 2014; 63 (Suppl. 01) A217
  • 26 Menne J, Dumann E, Haller H. et al Acute kidney injury and adverse renal events in patients receiving SGLT-2-inhibitors: A systematic review and meta-analysis. PLoS Med 2019; 16: e1002983 . doi:10.1371/journal.pmed.1002983
  • 27 Landgraf R, Kellerer M, Aberle J. et al Therapie des Typ-2-Diabetes. Diabetologie und Stoffwechsel 2018; 13: S144-S165 . doi:10.1055/a-0598-0475
  • 28 Gallwitz B. Clinical use of DPP-4 inhibitors. Front Endocrinol (Lausanne) 2019; 10 DOI: 10.3389/fendo.2019.00389.
  • 29 Singh-Franco D, McLaughlin-Middlekauff J, Elrod S. et al The effect of linagliptin on glycaemic control and tolerability in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes, Obesity and Metabolism 2012; 14: 694-708 . doi:10.1111/j.1463-1326.2012.01586.x
  • 30 Ceriello A, Inagaki N. Pharmacokinetic and pharmacodynamic evaluation of linagliptin for the treatment of type 2 diabetes mellitus, with consideration of Asian patient populations. Journal of Diabetes Investigation 2017; 8: 19-28 . doi:10.1111/jdi.12528
  • 31 Rosenstock J, Perkovic V, Alexander JH. et al Rationale, design, and baseline characteristics of the CArdiovascular safety and Renal Microvascular outcomE study with LINAgliptin (CARMELINA®): a randomized, double-blind, placebo-controlled clinical trial in patients with type 2 diabetes and high cardio-renal risk. Cardiovasc Diabetol 2018; 17: 39 . doi:10.1186/s12933-018-0682-3
  • 32 Rosenstock J, Perkovic V, Johansen OE. et al Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA 2019; 321: 69-79 . doi:10.1001/jama.2018.18269
  • 33 McGuire DK, Alexander JH, Johansen OE. et al Linagliptin effects on heart failure and related outcomes in individuals with type 2 diabetes mellitus at high cardiovascular and renal risk in CARMELINA. Circulation 2019; 139: 351-361 . doi:10.1161/CIRCULATIONAHA.118.038352
  • 34 Schernthaner G, Wanner C, Jurišić-Eržen D. et al CARMELINA: An important piece of the DPP-4 inhibitor CVOT puzzle. Diabetes Res Clin Pract 2019; 153: 30-40 . doi:10.1016/j.diabres.2019.05.013
  • 35 Rosenstock J, Kahn SE, Johansen OE. et al Effect of linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: the CAROLINA randomized clinical trial. JAMA 2019; 322: 1155-1166 . doi:10.1001/jama.2019.13772
  • 36 Rizos CV, Filippatos TD, Elisaf MS. Pharmacokinetic drug evaluation of empagliflozin plus linagliptin for the treatment of type 2 diabetes. Expert Opin Drug Metab Toxicol 2018; 14: 117-125 . doi:10.1080/17425255.2018.1418325
  • 37 Tinahones FJ, Gallwitz B, Nordaby M. et al Linagliptin as add-on to empagliflozin and metformin in patients with type 2 diabetes: two 24-week randomized, double-blind, double-dummy, parallel-group trials. Diabetes, Obesity and Metabolism 2017; 19: 266-274 . doi:10.1111/dom.12814
  • 38 Søfteland E, Meier JJ, Vangen B. et al Empagliflozin as add-on therapy in patients with type 2 diabetes inadequately controlled with linagliptin and metformin: a 24-week randomized, double-blind, parallel-group trial. Diabetes Care 2017; 40: 201-209 . doi:10.2337/dc16-1347
  • 39 DeFronzo RA, Lewin A, Patel S. et al Combination of empagliflozin and linagliptin as second-line therapy in subjects with type 2 diabetes inadequately controlled on metformin. Diabetes Care 2015; 38: 384-393 . doi:10.2337/dc14-2364
  • 40 Lewin A, DeFronzo RA, Patel S. et al Initial combination of empagliflozin and linagliptin in subjects wWith type 2 diabetes. Diabetes Care 2015; 38: 394-402 . doi:10.2337/dc14-2365
  • 41 Kim ES, Deeks ED. Empagliflozin/linagliptin: a review in type 2 diabetes. Drugs 2015; 75: 1547-1557 . doi:10.1007/s40265-015-0457-z
  • 42 DeFronzo RA, Lee C, Kohler S. Safety and tolerability of combinations of empagliflozin and linagliptin in patients with type 2 diabetes: pooled data from two randomized controlled trials. Adv Ther 2018; 35: 1009-1022 . doi:10.1007/s12325-018-0724-y
  • 43 Gallwitz B. A safety evaluation of empagliflozin plus linagliptin for treating type 2 diabetes. Expert Opin Drug Safety 2017; 16: 1399-1405 . doi:10.1080/14740338.2017.1382471
  • 44 Molina-Vega M, Muñoz-Garach A, Fernández-García JC. et al The safety of DPP-4 inhibitor and SGLT-2 inhibitor combination therapies. Expert Opin Drug Safety 2018; 17: 815-824 . doi:10.1080/14740338.2018.1497158
  • 45 Takahashi H, Nomiyama T, Terawaki Y. et al Combined treatment with DPP-4 inhibitor linagliptin and SGLT-2 inhibitor empagliflozin attenuates neointima formation after vascular injury in diabetic mice. Biochemistry and Biophysics Reports 2019; 18: 100640 . doi:10.1016/j.bbrep.2019.100640
  • 46 Rosenstock J, Perkovic V, Johansen OE. et al Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA 2019; 321: 69-79 . doi:10.1001/jama.2018.18269