Int J Sports Med 2020; 41(13): 951-961
DOI: 10.1055/a-1195-2737
Training & Testing

Exercise-induced Nitric Oxide Contributes to Spatial Memory and Hippocampal Capillaries in Rats

Yingqiang Qi
1   Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
2   Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
,
Sanrong Wang
3   Department of Rehabilitation Medicine and Physical Therapy, Chongqing Medical University Affiliated Second Hospital, Chongqing, China
,
Yanmin Luo
4   Department of Physiology, Chongqing Medical University, Chongqing, China
,
Wei Huang
1   Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
2   Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
,
Linmu Chen
5   Department of Histology and Embryology, Shenzhen Children’s Hospital, Shenzhen, China
,
Yi Zhang
1   Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
2   Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
,
Xin Liang
1   Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
2   Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
,
Jing Tang
1   Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
2   Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
,
Yang Zhang
1   Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
2   Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
,
Lei Zhang
1   Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
2   Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
,
Fenglei Chao
1   Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
2   Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
,
Yuan Gao
6   Department of Geriatrics, Chongqing Medical University First Affiliated Hospital, Chongqing, China
,
Yanqing Zhu
1   Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
2   Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
,
Yong Tang
1   Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
2   Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
› Author Affiliations
Funding This study was supported by grants from the National Natural Science Foundation of China (81871073 and 81671259)

Abstract

Exercise has been argued to improve cognitive function in both humans and rodents. Angiogenesis significantly contributes to brain health, including cognition. The hippocampus is a crucial brain region for cognitive function. However, studies quantifying the capillary changes in the hippocampus after running exercise are lacking. Moreover, the molecular details underlying the effects of running exercise remain poorly understood. We show that endogenous nitric oxide contributes to the beneficial effects of running exercise on cognition and hippocampal capillaries. Four weeks of running exercise significantly improved spatial memory ability and increased the number of capillaries in the cornu ammonis 1 subfield and dentate gyrus of Sprague-Dawley rats. Running exercise also significantly increased nitric oxide synthase activity and nitric oxide content in the rat hippocampus. After blocking the synthesis of endogenous nitric oxide by lateral ventricular injection of NG-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase inhibitor, the protective effect of running exercise on spatial memory was eliminated. The protective effect of running exercise on angiogenesis in the cornu ammonis 1 subfield and dentate gyrus of rats was also absent after nitric oxide synthase inhibition. Therefore, during running excise, endogenous nitric oxide may contribute to regulating spatial memory ability and angiogenesis in cornu ammonis 1 subfield and dentate gyrus of the hippocampus.



Publication History

Received: 19 December 2019

Accepted: 18 May 2020

Article published online:
08 July 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Creer DJ, Romberg C, Saksida LM. et al. Running enhances spatial pattern separation in mice. Proc Natl Acad Sci USA 2010; 107: 2367-2372 DOI: 10.1073/pnas.0911725107.
  • 2 Voss MW, Vivar C, Kramer AF. et al. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 2013; 17: 525-544 DOI: 10.1016/j.tics.2013.08.001.
  • 3 Nagamatsu LS, Flicker L, Kramer AF. et al. Exercise is medicine, for the body and the brain. Br J Sports Med 2014; 48: 943-944 DOI: 10.1136/bjsports-2013-093224.
  • 4 Hotting K, Roder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 2013; 37: 2243-2257 doi:10.1016/j.neubiorev.2013.04.005
  • 5 Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 2007; 30: 464-472 doi:10.1016/j.tins.2007.06.011
  • 6 Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab 2012; 16: 706-722 doi:10.1016/j.cmet.2012.08.012
  • 7 Duzel E, van Praag H, Sendtner M. Can physical exercise in old age improve memory and hippocampal function?. Brain 2016; 139: 662-673 doi:10.1093/brain/awv407
  • 8 Kodali M, Megahed T, Mishra V. et al. Voluntary running exercise-mediated enhanced neurogenesis does not obliterate retrograde spatial memory. J Neurosci 2016; 36: 8112-8122 DOI: 10.1523/JNEUROSCI.0766-16.2016.
  • 9 Moon HY, Becke A, Berron D. et al. Running-induced systemic Cathepsin B secretion is associated with memory function. Cell Metab 2016; 24: 332-340 DOI: 10.1016/j.cmet.2016.05.025.
  • 10 Robertson EM, Takacs A. Exercising control over memory consolidation. Trends Cogn Sci 2017; 21: 310-312 doi:10.1016/j.tics.2017.03.001
  • 11 Gorchetchnikov A, Grossberg S. Space, time and learning in the hippocampus: how fine spatial and temporal scales are expanded into population codes for behavioral control. Neural Netw 2007; 20: 182-193 doi:10.1016/j.neunet.2006.11.007
  • 12 Bellmund JLS, Gardenfors P, Moser EI. et al. Navigating cognition: Spatial codes for human thinking. Science 2018; 362 DOI: 10.1126/science.aat6766.
  • 13 Epstein RA, Patai EZ, Julian JB. et al. The cognitive map in humans: spatial navigation and beyond. Nat Neurosci 2017; 20: 1504-1513 DOI: 10.1038/nn.4656.
  • 14 Kerr AL, Steuer EL, Pochtarev V. et al. Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience 2010; 171: 214-226 DOI: 10.1016/j.neuroscience.2010.08.008.
  • 15 Troen AM, Shea-Budgell M, Shukitt-Hale B. et al. B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. Proc Natl Acad Sci USA 2008; 105: 12474-12479 DOI: 10.1073/pnas.0805350105.
  • 16 Cenquizca LA, Swanson LW. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev 2007; 56: 1-26 doi:10.1016/j.brainresrev.2007.05.002
  • 17 Coyle P. Vascular patterns of the rat hippocampal formation. Exp Neurol 1976; 52: 447-458
  • 18 Bartesaghi R, Migliore M, Gessi T. Input-output relations in the entorhinal cortex-dentate-hippocampal system: evidence for a non-linear transfer of signals. Neuroscience 2006; 142: 247-265
  • 19 Hitti FL, Siegelbaum SA. The hippocampal CA2 region is essential for social memory. Nature 2014; 508: 88-92 doi:org/10.1038/nature13028
  • 20 Jiang Q, Zhang ZG, Ding GL. et al. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 2005; 28: 698-707 DOI: 10.1016/j.neuroimage.2005.06.063.
  • 21 Pereira AC, Huddleston DE, Brickman AM. et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 2007; 104: 5638-5643 DOI: 10.1073/pnas.0611721104.
  • 22 Van der Borght K, Kobor-Nyakas DE, Klauke K. et al. Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus 2009; 19: 928-936 DOI: 10.1002/hipo.20545.
  • 23 Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 2009; 61: 62-97 doi:10.1124/pr.108.000547
  • 24 Poulos TL, Li H. Structural basis for isoform-selective inhibition in nitric oxide synthase. Acc Chem Res 2013; 46: 390-398 doi:10.1021/ar300175n
  • 25 Lowenstein CJ, Snyder SH. Nitric oxide, a novel biologic messenger. Cell 1992; 70: 705-707 doi:10.1016/0092-8674(92)9031-r
  • 26 Atochin DN, Wang A, Liu VW. et al. The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. J Clin Invest 2007; 117: 1961-1967 DOI: 10.1172/JCI29877.
  • 27 Atochin DN, Huang PL. Endothelial nitric oxide synthase transgenic models of endothelial dysfunction. Pflugers Arch 2010; 460: 965-974 doi:10.1007/s00424-010-0867-4
  • 28 Wang S, Pan DX, Wang D. et al. Nitric oxide facilitates active avoidance learning via enhancement of glutamate levels in the hippocampal dentate gyrus. Behav Brain Res 2014; 271: 177-183 DOI: 10.1016/j.bbr.2014.06.011.
  • 29 Bohme GA, Bon C, Lemaire M. et al. Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc Natl Acad Sci USA 1993; 90: 9191-9194 DOI: 10.1073/pnas.90.19.9191.
  • 30 Murohara T, Asahara T, Silver M. et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 1998; 101: 2567-2578 DOI: 10.1172/jci1560.
  • 31 de la Torre JC, Aliev G. Inhibition of vascular nitric oxide after rat chronic brain hypoperfusion: spatial memory and immunocytochemical changes. J Cereb Blood Flow Metab 2005; 25: 663-672 doi:10.1038/sj.jcbfm.9600057
  • 32 Wang S, Qi Y, Yu L. et al. Endogenous nitric oxide regulates blood vessel growth factors, capillaries in the cortex, and memory retention in Sprague-Dawley rats. Am J Transl Res 2016; 8: 5271-5285
  • 33 Maiorana A, O’Driscoll G, Taylor R, Green D. Exercise and the nitric oxide vasodilator system. Sports Med 2003; 33: 1013-1015 doi:10.2165/00007256-200333140-00001
  • 34 Chen Q, Xiao DS. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus. Nitric Oxide 2014; 36: 1-10 doi:10.1016/j.niox.2013.10.009
  • 35 Harriss DJ, Macsween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817 doi:10.1055/a-1015-3123
  • 36 Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates – The New Coronal Set. 5th ed. Cambridge, MA: Academic Press; 2004
  • 37 Qiang M, Chen YC, Wang R. et al. Nitric oxide is involved in the formation of learning and memory in rats: studies using passive avoidance response and Morris water maze task. Behav Pharmacol 1997; 8: 183-187 DOI: 10.1016/S0166-4328(96)02552-8.
  • 38 Chen LM, Zhang AP, Wang FF. et al. Running exercise protects the capillaries in white matter in a rat model of depression. J Comp Neurol 2016; 524: 3577-3586 DOI: 10.1002/cne.24017.
  • 39 Wang S, Chen L, Zhang L. et al. Effects of long-term exercise on spatial learning, memory ability, and cortical capillaries in aged rats. Med Sci Monit 2015; 21: 945-954 DOI: 10.12659/MSM.893935.
  • 40 Luo Y, Xiao Q, Wang J. et al. Running exercise protects oligodendrocytes in the medial prefrontal cortex in chronic unpredictable stress rat model. Transl Psychiatry 2019; 9: 322-333 DOI: 10.1038/s41398-019-0662-8.
  • 41 Tang J, Liang X, Zhang Y. et al. The effects of running exercise on oligodendrocytes in the hippocampus of rats with depression induced by chronic unpredictable stress. Brain Res Bull 2019; 149: 1-10 DOI: 10.1016/j.brainresbull.2019.04.001..
  • 42 Liang AX, Tang J, Chao F. et al. Exercise improves depressive symptoms by increasing the number of excitatory synapses in the hippocampus of CUS-induced depression model rats. Behav Brain Res 2019; 112-115 DOI: org/10.1016/j.bbr.2019.112115.
  • 43 Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11: 47-60
  • 44 Tang Y, Nyengaard JR, Andersen JB. et al. The application of stereological methods for estimating structural parameters in the human heart. Anat Rec (Hoboken) 2009; 292: 1630-1647 DOI: 10.1002/ar.20952.
  • 45 Ang ET, Dawe GS, Wong PT. et al. Alterations in spatial learning and memory after forced exercise. Brain Res 2006; 1113: 186-193 DOI: 10.1016/j.brainres.2006.07.023.
  • 46 Alomari MA, Khabour OF, Alzoubi KH. et al. Forced and voluntary exercises equally improve spatial learning and memory and hippocampal BDNF levels. Behav Brain Res 2013; 247: 34-39 DOI: 10.1016/j.bbr.2013.03.007.
  • 47 Lazarov O, Hollands C. Hippocampal neurogenesis: learning to remember. Prog Neurobiol 2016; 138–140: 1-18 doi:10.1016/j.pneurobio.2015.12.006
  • 48 Wrann CD, White JP, Salogiannnis J. et al. Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metab 2013; 18: 649-659 DOI: 10.1016/j.cmet.2013.09.008.
  • 49 Moosavi M, Abbasi L, Zarifkar A. et al. The role of nitric oxide in spatial memory stages, hippocampal ERK and CaMKII phosphorylation. Pharmacol Biochem Behav 2014; 122: 164-172 DOI: 10.1016/j.pbb.2014.03.021.
  • 50 Wei XM, Yang W, Liu LX. et al. Effects of L-arginine and N(omega)-nitro-L-arginine methylester on learning and memory and alpha7 nAChR expression in the prefrontal cortex and hippocampus of rats. Neurosci Bull 2013; 29: 303-310 DOI: 10.1007/s12264-013-1331-1.
  • 51 Boultadakis A, Pitsikas N. Effects of the nitric oxide synthase inhibitor L-NAME on recognition and spatial memory deficits produced by different NMDA receptor antagonists in the rat. Neuropsychopharmacology 2010; 35: 2357-2366 doi:10.1038/npp.2010.109
  • 52 Dimmeler S, Zeiher AM. Exercise and cardiovascular health: get active to “AKTivate” your endothelial nitric oxide synthase. Circulation 2003; 107: 3118-3120 doi:10.1161/01.CIR.0000074244.82874.A0
  • 53 Ito D, Ito O, Mori N. et al. Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure. Clin Exp Pharmacol Physiol 2013; 40: 617-625 DOI: 10.1111/1440-1681.12130.
  • 54 Hambrecht R, Adams V, Erbs S. et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 2003; 107: 3152-3158 DOI: 10.1161/01.CIR.0000074229.93804.5C.
  • 55 Jaba IM, Zhuang ZW, Li N. et al. NO triggers RGS4 degradation to coordinate angiogenesis and cardiomyocyte growth. J Clin Invest 2013; 123: 1718-1731 DOI: 10.1172/jci65112.
  • 56 Yin T, Ma X, Zhao L. et al. Angiotensin II promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Res 2008; 18: 792-799 DOI: 10.1038/cr.2008.69.
  • 57 Gertz K, Priller J, Kronenberg G, Fink KB. et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res 2006; 99: 1132-1140 DOI: 10.1161/01.RES.0000250175.14861.77.