Ultraschall Med 2022; 43(04): 387-392
DOI: 10.1055/a-1194-4225
Rapid Communication

Technical Feasibility of Electromagnetic US/CT Fusion Imaging and Virtual Navigation in the Guidance of Spine Biopsies

Technische Machbarkeit von elektromagnetischer US/CT-Fusionsbildgebung und virtueller Navigation bei der Steuerung von Wirbelsäulenbiopsien
Giovanni Mauri
1   Università degli Studi di Milano, Department of Oncology and Hematology-Oncology, Milan, Italy
2   European Institute of Oncology IRCCS, Division of Interventional Radiology, Milan, Italy
,
Salvatore Gitto
3   Università degli Studi di Milano, Department of Biomedical Sciences for Health, Milan, Italy
,
Lorenzo Carlo Pescatori
4   Henri Mondor University Hospital, Department of Radiology, Creteil, France
,
Domenico Albano
5   IRCCS Orthopedic Institute Galeazzi, Unit of Diagnostic and Interventional Radiology, Milan, Italy
6   Università degli Studi di Palermo, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Section of Radiological Sciences, Palermo, Italy
,
Carmelo Messina
3   Università degli Studi di Milano, Department of Biomedical Sciences for Health, Milan, Italy
5   IRCCS Orthopedic Institute Galeazzi, Unit of Diagnostic and Interventional Radiology, Milan, Italy
,
Luca Maria Sconfienza
3   Università degli Studi di Milano, Department of Biomedical Sciences for Health, Milan, Italy
5   IRCCS Orthopedic Institute Galeazzi, Unit of Diagnostic and Interventional Radiology, Milan, Italy
› Author Affiliations

Abstract

Purpose To test the technical feasibility of electromagnetic computed tomography (CT) + ultrasound fusion (US)-guided bone biopsy of spinal lesions.

Materials and Methods This retrospective study included 14 patients referred for biopsy of spinal bone lesions without cortical disruption or intervertebral disc infection. Lesions were located in the sacrum (n = 4), lumbar vertebral body (n = 7) or intervertebral disc (n = 3). Fusion technology matched a pre-procedure CT scan with real-time ultrasound. The first six procedures were performed under both standard CT and CT + US fusion guidance (group 1). In the last eight procedures, the needle was positioned under fusion imaging guidance alone, and CT was only used at the end of needle placement to confirm correct positioning (group 2). Additionally, we retrieved 8 patients (controls) with location-matched lesions as group 2, which were biopsied in the past with the standard CT-guided technique. The procedure duration and number of CT passes were recorded.

Results Mean procedure duration and median CT pass number were significantly higher in group 1 vs. group 2 (45 ± 5 vs. 26 ± 3 minutes, p = 0.002 and 7; 5.25–8.75 vs. 3; 3–3.25, p = 0.001). In controls, the mean procedure duration was 47 ± 4 minutes (p = 0.001 vs. group 2; p = 0.696 vs. group 1) and the number of CT passes was 6.5 (5–8) (p = 0.001 vs. group 2; p = 0.427 vs. group 1). No complications occurred and all specimens were adequate overall. In one case in group 2, the needle position was modified according to CT assessment before specimen withdrawal.

Conclusion Electromagnetic CT+US fusion-guided bone biopsy of spinal lesions is feasible and safe. Compared to conventional CT guidance, it may reduce procedural time and the number of CT passes.

Zusammenfassung

Ziel Prüfung der technischen Machbarkeit der elektromagnetischen Computertomografie (CT) + Ultraschallfusion (US)-gesteuerten Knochenbiopsie von Wirbelsäulenläsionen.

Material und Methoden Diese retrospektive Studie schloss 14 Patienten ein, die überwiesen wurden zur Biopsie von Wirbelsäulen-Knochenläsionen ohne kortikale Störung oder Bandscheibeninfektion. Die Läsionen befanden sich im Kreuzbein (n = 4), im Lendenwirbelkörper (n = 7) oder in der Bandscheibe (n = 3). Die Fusionstechnologie verwendete ein CT-Scan vor der Prozedur und Echtzeit-Ultraschall. Die ersten 6 Eingriffe wurden sowohl unter Standard-CT als auch unter CT + US-Fusionsführung durchgeführt (Gruppe 1). Bei den letzten 8 Eingriffen wurde die Nadel nur unter Führung der Fusionsbildgebung positioniert, und das CT wurde nach erfolgter Nadelplatzierung zur Bestätigung der korrekten Positionierung verwendet (Gruppe 2). Zusätzlich riefen wir 8 Patienten mit lokal übereinstimmenden Läsionen wie bei Gruppe 2 auf (Kontrollen), die in der Vergangenheit mit der CT-gesteuerten Standardtechnik biopsiert wurden. Die Dauer des Eingriffs und die Anzahl der CT-Durchgänge wurden aufgezeichnet.

Ergebnis Die mittlere Eingriffsdauer war in Gruppe 1 signifikant höher als in Gruppe 2 (45 ± 5 vs. 26 ± 3 Minuten; p = 0,002), ebenso die mediane Anzahl der CT-Durchläufe (7; 5,25–8,75 vs. 3; 3–3,25; p = 0,001). Bei den Kontrollen betrug die mittlere Eingriffsdauer 47 ± 4 Minuten (p = 0,001 vs. Gruppe 2; p = 0,696 vs. Gruppe 1) und die Anzahl der CT-Durchgänge 6,5 (5–8; p = 0,001 vs. Gruppe 2; p = 0,427 vs. Gruppe 1). Es traten keine Komplikationen auf und alle Proben waren insgesamt geeignet. In einem Fall in Gruppe 2 wurde die Nadelposition entsprechend der CT-Beurteilung vor der Probenentnahme modifiziert.

Schlussfolgerung Die elektromagnetische CT+US-fusionsgesteuerte Knochenbiopsie von Wirbelsäulenläsionen ist durchführbar und sicher. Im Vergleich zur konventionellen CT-Steuerung kann sie die Dauer des Eingriffs und die Anzahl der CT-Durchgänge reduzieren.



Publication History

Received: 09 April 2020

Accepted: 22 May 2020

Article published online:
12 August 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Albano D, Messina C, Gitto S. et al. Differential Diagnosis of Spine Tumors: My Favorite Mistake. Semin Musculoskelet Radiol 2019; 23: 26-35
  • 2 Cannavò L, Albano D, Messina C. et al. Accuracy of CT and MRI to assess resection margins in primary malignant bone tumours having histology as the reference standard. Clin Radiol 2019; 74: 736.e13-736.e21
  • 3 Le H, Lee S, Munk P. Image-Guided Musculoskeletal Biopsies. Semin Intervent Radiol 2010; 27: 191-198
  • 4 Monfardini L, Gennaro N, Della Vigna P. et al. Cone-Beam CT-Assisted Ablation of Renal Tumors: Preliminary Results. Cardiovasc Intervent Radiol 2019; 42: 1718-1725
  • 5 Wallace AN, Pacheco RA, Vyhmeister R. et al. Fluoroscopy-guided intervertebral disc biopsy with a coaxial drill system. Skeletal Radiol 2016; 45: 273-278
  • 6 Kerimaa P, Marttila A, Hyvönen P. et al. MRI-guided biopsy and fine needle aspiration biopsy (FNAB) in the diagnosis of musculoskeletal lesions. Eur J Radiol 2013; 82: 2328-2333
  • 7 Sconfienza LM, Adriaensen M, Albano D. et al. Clinical indications for image guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR) – part III, nerves of the upper limb. Eur Radiol 2020; 30: 1498-1506
  • 8 Sconfienza LM, Adriaensen M, Albano D. et al. Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR) – Part II, elbow and wrist. Eur Radiol 2020; 30: 2220-2230
  • 9 Sconfienza LM, Adriaensen M, Albano D. et al. Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR) – part I, shoulder. Eur Radiol 2020; 30: 903-913
  • 10 Sconfienza LM, Mauri G, Grossi F. et al. Pleural and Peripheral Lung Lesions: Comparison of US- and CT-guided Biopsy. Radiology 2013; 266: 930-935
  • 11 Saifuddin A, Mitchell R, Burnett SJD. et al. Ultrasound-guided needle biopsy of primary bone tumours. J Bone Joint Surg Br 2000; 82-B: 50-54
  • 12 Ewertsen C, Săftoiu A, Gruionu LG. et al. Real-Time Image Fusion Involving Diagnostic Ultrasound. Am J Roentgenol 2013; 200: W249-W255
  • 13 Monfardini L, Orsi F, Caserta R. et al. Ultrasound and cone beam CT fusion for liver ablation: technical note. Int J Hyperthermia 2018; 35: 500-504
  • 14 Mauri G. Expanding role of virtual navigation and fusion imaging in percutaneous biopsies and ablation. Abdom Imaging 2015; 40: 3238-3239
  • 15 Brock M, Roghmann F, Sonntag C. et al. Fusion of Magnetic Resonance Imaging and Real-Time Elastography to Visualize Prostate Cancer: A Prospective Analysis using Whole Mount Sections after Radical Prostatectomy. Ultraschall in Med 2014; 36: 355-361
  • 16 Calandri M, Mauri G, Yevich S. et al. Fusion Imaging and Virtual Navigation to Guide Percutaneous Thermal Ablation of Hepatocellular Carcinoma: A Review of the Literature. Cardiovasc Intervent Radiol 2019; 42: 639-647
  • 17 Mauri G, Cova L, De Beni S. et al. Real-Time US-CT/MRI Image Fusion for Guidance of Thermal Ablation of Liver Tumors Undetectable with US: Results in 295 Cases. Cardiovasc Intervent Radiol 2015; 38: 143-151
  • 18 Mauri G, Gennaro N, De Beni S. et al. Real-Time US-18FDG-PET/CT Image Fusion for Guidance of Thermal Ablation of 18FDG-PET-Positive Liver Metastases: The Added Value of Contrast Enhancement. Cardiovasc Intervent Radiol 2019; 42: 60-68
  • 19 Prada F, Vitale V, Del Bene M. et al. Contrast-enhanced MR Imaging versus Contrast-enhanced US: A Comparison in Glioblastoma Surgery by Using Intraoperative Fusion Imaging. Radiology 2017; 285: 242-249
  • 20 Klauser AS, De Zordo T, Feuchtner GM. et al. Fusion of Real-time US with CT Images to Guide Sacroiliac Joint Injection in Vitro and in Vivo. Radiology 2010; 256: 547-553
  • 21 Sartoris R, Orlandi D, Corazza A. et al. In vivo feasibility of real-time MR–US fusion imaging lumbar facet joint injections. J Ultrasound 2017; 20: 23-31
  • 22 Garnon J, Koch G, Tsoumakidou G. et al. Ultrasound-Guided Biopsies of Bone Lesions Without Cortical Disruption Using Fusion Imaging and Needle Tracking: Proof of Concept. Cardiovasc Intervent Radiol 2017; 40: 1267-1273
  • 23 Khalil JG, Mott MP, Parsons TW. et al. 2011 Mid-America Orthopaedic Association Dallas B. Phemister Physician in Training Award: Can Musculoskeletal Tumors be Diagnosed with Ultrasound Fusion-Guided Biopsy?. Clin Orthop Relat Res 2012; 470: 2280-2287
  • 24 Patel IJ, Davidson JC, Nikolic B. et al. Consensus Guidelines for Periprocedural Management of Coagulation Status and Hemostasis Risk in Percutaneous Image-guided Interventions. J Vasc Interv Radiol 2012; 23: 727-736
  • 25 Monfardini L, Preda L, Aurilio G. et al. Ct-guided bone biopsy in cancer patients with suspected bone metastases: retrospective review of 308 procedures. Radiol Med 2014; 119: 852-860
  • 26 Tselikas L, Joskin J, Roquet F. et al. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance. Cardiovasc Intervent Radiol 2015; 38: 167-176
  • 27 Vieillard MH, Boutry N, Chastanet P. et al. Contribution of percutaneous biopsy to the definite diagnosis in patients with suspected bone tumor. Joint Bone Spine 2005; 72: 53-60
  • 28 Hoang JK, Yoshizumi TT, Toncheva G. et al. Radiation Dose Exposure for Lumbar Spine Epidural Steroid Injections: A Comparison of Conventional Fluoroscopy Data and CT Fluoroscopy Techniques. Am J Roentgenol 2011; 197: 778-782
  • 29 Paulson EK, Sheafor DH, Enterline DS. et al. CT Fluoroscopy-guided Interventional Procedures: Techniques and Radiation Dose to Radiologists. Radiology 2001; 220: 161-167
  • 30 Martins PH, Costa FM, Lopes FPPL. et al. Advanced MR Imaging and Ultrasound Fusion in Musculoskeletal Procedures. Magn Reson Imaging Clin N Am 2018; 26: 571-579