CC BY-NC-ND 4.0 · Planta Medica International Open 2020; 07(03): e114-e121
DOI: 10.1055/a-1186-2400
Original Papers

Biological Activity of Matricaria chamomilla Essential Oils of Various Chemotypes

1   Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
,
Jürgen Wanner
2   Kurt Kitzing Co., Wallerstein, Germany
,
Nurhayat Tabanca
3   USDA-ARS, Subtropical Horticulture Research Station, Miami, USA
,
Abbas Ali
4   National Center for Natural Products Research, University of Mississippi, University, MS, USA
,
Velizar Gochev
5   Department of Biochemistry and Microbiology, “Paisii Hilendarski”-University of Plovdiv, Plovdiv, Bulgaria
,
Erich Schmidt
1   Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
,
Vijay K. Kaul
6   CSIR – Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
,
Virendra Singh
6   CSIR – Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
,
Leopold Jirovetz
1   Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
› Author Affiliations

Abstract

The essential oil of Matricaria chamomilla L., which is commonly used for medicinal and cosmetic purposes, can be differentiated between several chemotypes. In the current study, six essential chamomile oil samples of various origins (four of commercial sources, one of cultivation, one of wild collection) were examined regarding their composition and biological activities, i. e., antibacterial, antifungal, mosquito repellent, and larvicidal effects. GC-MS analyses revealed that the samples largely varied in composition and could be attributed to various chemotypes. In contrast to the other two samples, the four commercial samples were unusually high in trans-β-farnesene. The overall antimicrobial effects were only moderate, but it could be shown that a higher content in α-bisabolol and a smaller in α-bisabolol oxides A and B had a positive effect on overall activity. All samples had a biting deterrent effect comparable to DEET. Higher concentrations of (Z )- and (E )-spiroethers improved larvicidal activity, whereas trans-β-farnesene had the opposite effect. In conclusion, the importance of α-bisabolol for the biological activity of chamomile essential oil could be demonstrated.



Publication History

Received: 16 December 2019
Received: 15 May 2020

Accepted: 18 May 2020

Article published online:
15 July 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Europäisches Arzneibuch (Ph.Eur. 8.8): Amtliche österreichische Ausgabe. 8. Ausgabe, 8. Nachtrag. Wien: Verlag Österreich; 2016
  • 2 Matricariae flos In: Wichtl M, Bauer R, editors Teedrogen und Phytopharmaka: ein Handbuch für die Praxis auf wissenschaftlicher Grundlage. Stuttgart. Wissenschaftliche Verlagsgesellschaft; 2009: 420–422
  • 3 Singh O, Khanam Z, Misra N, Srivastava MK. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn Rev 2011; 5: 82-95
  • 4 Kazemi M. Chemical Composition and Antimicrobial Activity of Essential Oil of Matricaria recutita . Int J Food Prop 2015; 18: 1784-1792
  • 5 Tolouee M, Alinezhad S, Saberi R, Eslamifar A, Zad SJ, Jaimand K, Taeb J, Rezaee M-B, Kawachi M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem. Int J Food Microbiol 2010; 139: 127-133
  • 6 Formisano C, Delfine S, Oliviero F, Tenore GC, Rigano D, Senatore F. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy). Ind Crops Prod 2015; 63: 256-263
  • 7 Ramadan M, Goeters S, Watzer B, Krause E, Lohmann K, Bauer R, Hempel B, Imming P. Chamazulene carboxylic acid and matricin: A natural profen and its natural prodrug, identified through similarity to synthetic drug substances. J Nat Prod 2006; 69: 1041-1045
  • 8 Rocha NFM, Rios ERV, Carvalho AMR, Cerqueira GS, Lopes Ade A, LKAM Leal, Dias ML, de Sousa DP, de Sousa FCF. Anti-nociceptive and anti-inflammatory activities of (−)-α-bisabolol in rodents. Naunyn Schmiedebergs Arch Pharmacol 2011; 384: 525-533
  • 9 Schilcher H. Neuere Erkenntnisse bei der Qualitätsbeurteilung von Kamillenblüten bzw. Kamillenöl. Planta Med 1973; 23: 132-144
  • 10 Schilcher H. Die Kamille: Handbuch für Ärzte, Apotheker und andere Naturwissenschaftler. Stuttgart: Wissenschaftliche Verlagsgesellschaft. 1987
  • 11 Franz C. Genetics. In: Hay RKM, Waterman PG, editors Volatile Oil Crops: Their Biology, Biochemistry and Production. Harlow: Longman Scientific & Technical; 1993
  • 12 Wagner C, Friedt W, Marquard RA, Ordon F. Molecular analyses on the genetic diversity and inheritance of (−)-α-bisabolol and chamazulene content in tetraploid chamomile (Chamomilla recutita (L.) Rausch.). Plant Sci 2005; 169: 917-927
  • 13 Rubiolo P, Belliardo F, Cordero C, Liberto E, Sgorbini B, Bicchi C. Headspace-solid-phase microextraction fast GC in combination with principal component analysis as a tool to classify different chemotypes of chamomile flower-heads (Matricaria recutita L.). Phytochem Anal 2006; 17: 217-225
  • 14 Satyal P, Shrestha S, Setzer WN. Composition and bioactivities of an (E)-β-farnesene chemotype of chamomile (Matricaria chamomilla) essential oil from Nepal. Nat Prod Commun 2015; 10: 1453-1457
  • 15 Gosztola B, Németh E, Sárosi S, Szabó K, Kozák A. Comparative evaluation of chamomile (Matricaria recutita L.) populations from different origin.. Int J Hortic Sci 2006; 12: 91-95
  • 16 Braga PC, Dal Sasso M, Fonti E, Culici M. Antioxidant activity of bisabolol: inhibitory effects on chemiluminescence of human neutrophil bursts and cell-free systems. Pharmacology 2009; 83: 110-115
  • 17 Capuzzo A, Occhipinti A, Maffei ME. Antioxidant and radical scavenging activities of chamazulene. Nat Prod Res 2014; 28: 2321-2323
  • 18 Safayhi H, Sabieraj J, Sailer ER, Ammon HP. Chamazulene: an antioxidant-type inhibitor of leukotriene B4 formation. Planta Med 1994; 60: 410-413
  • 19 Rekka EA, Kourounakis AP, Kourounakis PN. Investigation of the effect of chamazulene on lipid peroxidation and free radical processes. Res Commun Mol Pathol Pharmacol 1996; 92: 361-364
  • 20 Barbosa LN, da Silva Probst I, Teles Andrade BFM, Bérgamo Alves FC, Albano M, de Lourdes Ribeiro de Souza da Cunha M, Doyama JT, Mores Rall VL, Júnior AF. In vitro Antibacterial and chemical properties of essential oils including native plants from brazil against pathogenic and resistant bacteria. J Oleo Sci 2015; 64: 289-298
  • 21 Wesolowska A, Grzeszczuk M, Kulpa D. Propagation method and distillation apparatus type affect essential oil from different parts of Matricaria recutita L. plants. J Essent Oil Bear Plants 2015; 18: 179-194
  • 22 Su S, Liu X, Pan G, Hou X, Zhang H, Yuan Y. In vitro characterization of a (E)-β-farnesene synthase from Matricaria recutita L. and its up-regulation by methyl jasmonate. Gene 2015; 571: 58-64
  • 23 Cox SD, Markham JL. Susceptibility and intrinsic tolerance of Pseudomonas aeruginosa to selected plant volatile compounds. J Appl Microbiol 2007; 103: 930-936
  • 24 Forrer M, Kulik EM, Filippi A, Waltimo T. The antimicrobial activity of α-bisabolol and tea tree oil against Solobacterium moorei, a Gram-positive bacterium associated with halitosis. Arch Oral Biol 2013; 58: 10-16
  • 25 Arnason T, Swain T, Wat CK, Graham EA, Partington S, Towers GHN, Lam J. Mosquito larvicidal activity of polyacetylenes from species in the Asteraceae. Biochem Syst Ecol 1981; 9: 63-68
  • 26 Gosztola B, Sarosi S, Nemeth E. Variability of the essential oil content and composition of chamomile (Matricaria recutita L.) affected by weather conditions. Nat Prod Commun 2010; 5: 465-470
  • 27 Salamon I. Chamomile biodiversity of the essential oil qualitativequantitative characteristics. In: Şener B, editor Innovations in Chemical Biology. Dordrecht: Springer Netherlands; 2009: 83–90
  • 28 Horn W, Franz C, Wickell I. Zur Genetik der Bisaboloide bei der Kamille. Plant Breed 1988; 101: 307-312
  • 29 Massoud H, Franz C. Quantitative genetical aspects of Chamomilla recutita (L.) Rauschert. J Essent Oil Res 1990; 2: 15-20
  • 30 Massoud HY, Franz CM. Quantitative genetical aspects of Chamomilla recutita (L.) Rauschert II. Genotype-environment interactions and proposed breeding methods. J Essent Oil Res 1990; 2: 299-305
  • 31 Hegnauer R. Phytochemistry and plant taxonomy—An essay on the chemotaxonomy of higher plants. Phytochemistry 1986; 25: 1519-1535
  • 32 Taviani P, Rosellini D, Veronesi F. Variation for agronomic and essential oil traits among wild populations of Chamomilla recutita (L.) Rauschert from central Italy. J Herbs Spices Med Plants 2002; 9: 353-358
  • 33 Sashidhara KV, Verma RS, Ram P. Essential oil composition of Matricaria recutita L. from the lower region of the Himalayas. Flavour Fragr J 2006; 21: 274-276
  • 34 Das M, Ram G, Singh A, Mallavarapu GR, Ramesh S, Ram M, Kumar S. Volatile constituents of different plant parts of Chamomilla recutita L. Rausch grown in the Indo-Gangetic plains. Flavour Fragr J 2002; 17: 9-12
  • 35 Stanojevic LP, Marjanovic-Balaban ZR, Kalaba VD, Stanojevic JS, Cvetkovic DJ. Chemical composition, antioxidant and antimicrobial activity of chamomile flowers essential oil (Matricaria chamomilla L.). J Essent Oil Bear Plants 2016; 19: 2017-2028
  • 36 Acimovic M, Stankovic J, Cvetkovic M, Kiprovski B, Todosijevic M. Essential oil quality of tetraploid chamomile cultivars grown in serbia. J Essent Oil Bear Plants 2018; 21: 15-22
  • 37 Stappen I, Wanner J, Tabanca N, Wedge DE, Ali A, Khan IA, Kaul VK, Lal B, Jaitak V, Gochev V, Girova T, Stoyanova A, Schmidt E, Jirovetz L. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plants of Western Himalaya. Planta Med 2014; 80: 1079-1087
  • 38 van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 1963; 11: 463-471
  • 39 Joulain D, König WA. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. Hamburg: EB Verlag; 2008
  • 40 Heller SR, Milne GWA. EPA/NIH Mass Spectral Data Base. Wash DC: US Gov Print Off; 1978
  • 41 Stenhagen E, Abrahamsson S, McLafferty FW. Registry of Mass Spectral Data. New York: Wiley; 1974
  • 42 Swigar AA, Siverstein RM. Monoterpenes. Milwaukee: Aldrich Chemical Co. 1981
  • 43 Wanner J, Schmidt E, Bail S, Jirovetz L, Buchbauer G, Gochev V, Girova T, Atanasova T, Stoyanova A. Chemical composition, olfactory evaluation and antimicrobial activity of selected essential oils and absolutes from Morocco. Nat Prod Commun 2010; 5: 1349-1354
  • 44 Ali A, Cantrell CL, Bernier UR, Duke SO, Schneider JC, Agramonte NM, Khan I. Aedes aegypti (Diptera: Culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids. J Med Entomol 2012; 49: 1370-1378
  • 45 Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol 1925; 18: 265-267
  • 46 Savin NE, Robertson JL, Russell RM. A critical evaluation of bioassay in insecticide research: likelihood ratio tests of dose-mortality regression. Bull Entomol Soc Am 1977; 23: 257-266