Planta Med 2020; 86(13/14): 1009-1024
DOI: 10.1055/a-1185-4437
Biological and Pharmacological Activity
Original Papers

Bioactive Properties of the Aqueous Extracts of Endophytic Fungi Associated with Scots Pine (Pinus sylvestris) Roots

1   Faculty of Natural Sciences and Engineering, Tampere University, Tampere, Finland
2   Natural Resources Institute Finland (Luke), Production Systems Unit, Biomass Characterization and Properties Group, Espoo, Finland
,
Maarit Karonen
3   Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
,
Riina Muilu-Mäkelä
2   Natural Resources Institute Finland (Luke), Production Systems Unit, Biomass Characterization and Properties Group, Espoo, Finland
,
Janne Kaseva
4   Natural Resources Institute Finland (Luke), Natural Resources Unit, Applied Statistical Methods Group, Jokioinen, Finland
,
Nuria de Pedro
5   Fundación MEDINA, Avda. del Conocimiento, Granada, Spain
,
Francisca Vicente
5   Fundación MEDINA, Avda. del Conocimiento, Granada, Spain
,
Olga Genilloud
5   Fundación MEDINA, Avda. del Conocimiento, Granada, Spain
,
Ulla Aapola
6   Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
,
Hannu Uusitalo
6   Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
7   Tays Eye Centre, Tampere University Hospital, Tampere, Finland
,
Katriina Vuolteenaho
8   The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
,
Robert Franzén
9   School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Espoo, Finland
,
Kristiina Wähälä
10   Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
11   Department of Chemistry, University of Helsinki, Helsinki, Finland
,
Matti Karp
1   Faculty of Natural Sciences and Engineering, Tampere University, Tampere, Finland
,
Ville Santala
1   Faculty of Natural Sciences and Engineering, Tampere University, Tampere, Finland
,
Tytti Sarjala
2   Natural Resources Institute Finland (Luke), Production Systems Unit, Biomass Characterization and Properties Group, Espoo, Finland
› Institutsangaben
Gefördert durch: COST FA1103 Endophytes in Biotechnology and Agriculture
Gefördert durch: Koneen Säätiö
Gefördert durch: European Regional Development Fund A71142

Abstract

Despite the continuing interest in various plant and natural products, only a small portion of the biologically active compounds from nature has been discovered and exploited. In this study, antioxidant and antibacterial properties of aqueous fractions of three endophytic fungi isolated from the roots of 8-year-old Scots pines (Pinus sylvestris) growing on a drained peatland were investigated. The endophytic fungi species were Acephala applanata, Phialocephala fortinii, and Humicolopsis cephalosporioides/Coniochaeta mutabilis. The bioactivities were examined using hydrogen peroxide scavenging and oxygen radical absorbance capacity tests as well as sensitive Escherichia coli-based biosensors, which produce a luminescent signal in the presence of substances with oxidative or genotoxic properties. In addition, cell models for Parkinsonʼs disease, age-related macular degeneration, and osteoarthritis were used to evaluate the potential for pharmaceutical applications. The aqueous extracts of fungi and 19 out of 42 fractions were found to be active in one or more of the tests used. However, no activity was found in the age-related macular degeneration and osteoarthritis cell model tests. Additionally, bioactivity data was connected with metabolites putatively annotated, and out of 330 metabolites, 177 were interesting in view of the bioactivities investigated. A majority of these were peptides and all three fungal species shared a highly similar metabolome. We propose that Scots pine endophytic fungi are a rich source of interesting metabolites, and synergistic effects may cause the bioactivities, as they were found to vary after the fractionation process.

Supporting Information



Publikationsverlauf

Eingereicht: 10. Dezember 2019

Angenommen nach Revision: 20. Mai 2020

Artikel online veröffentlicht:
10. Juni 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Stone J, Bacon C, White J. An Overview of endophytic Microbes: Endophytism defined. In: Bacon CW, White jr. JF. eds. Microbial Endophytes. New York: Marcel Dekker, Inc.; 2000: 3-29
  • 2 Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep 2001; 18: 448-459
  • 3 Strobel G, Daisy B, Castillo U, Harper J. Natural products from endophytic microorganisms. J Nat Prod 2004; 67: 257-268
  • 4 Firáková S, Šturdíková M, Múčková M. Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 2007; 62: 251-257
  • 5 Li X, He X, Hou L, Ren Y, Wang S, Su F. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci Rep 2018; 8: 7896
  • 6 Tienaho J, Karonen M, Muilu-Mäkelä R, Wähälä K, Leon Denegri E, Franzén R, Karp M, Santala V, Sarjala T. Metabolic profiling of water-soluble compounds from the extracts of Dark Septate Endophytic fungi (DSE) isolated from scots pine (Pinus sylvestris L.) seedlings using UPLC-Orbitrap-MS. Molecules 2019; 24: 2330
  • 7 Shashidhar MG, Giridhar P, Sankar KU, Manohar B. Bioactive principles from Cordyceps sinensis: A potent food supplement – A review. J Funct Foods 2013; 5: 1013-1030
  • 8 Kaarniranta K, Ryhänen T, Karjalainen H, Lammi M, Suuronen T, Huhtala A, Kontkanen M, Teräsvirta M, Uusitalo H, Salminen A. Geldanamycin increases 4-hydroxynonenal (HNE)-induced cell death in human retinal pigment epithelial cells. Neurosci Lett 2005; 382: 185-190
  • 9 Vuolteenaho K, Moilanen T, Knowles RG, Moilanen E. The role of nitric oxide in osteoarthritis. Scand J Rheumatol 2007; 36: 247-258
  • 10 Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinsonʼs disease. J Parkinson Dis 2013; 3: 461-491
  • 11 Belkin S, Van Dyk TK, Vollmer AC, Smulski DR, LaRossa RA. Monitoring subtoxic environmental hazards by stress-responsive luminous bacteria. Environ Toxicol Water Qual 1996; 11: 179-185
  • 12 Vollmer AC, Belkin S, Smulski DR, Van Dyk TK, LaRossa RA. Detection of DNA damage by use of Escherichia coli carrying recA′::lux, uvrA′::lux, or alkA′::lux reporter plasmids. Appl Environ Microbiol 1997; 63: 2566-2571
  • 13 Tienaho J, Sarjala T, Franzén R, Karp M. Method with high-throughput screening potential for antioxidative substances using Escherichia coli biosensor katG′::lux . J Microbiol Methods 2015; 118: 78-80
  • 14 Jiang ZY, Woollard ACS, Wolff SP. Hydrogen peroxide production during experimental protein glycation. FEBS 1990; 268: 69-71
  • 15 Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 2003; 51: 3273-3279
  • 16 Aapola U, Viitala K, Potila H, Savonen EM, Huhtala A, Sarjala T, Uusitalo H. Endophytic fungus Phialophora lignicola extract efficiently protects ARPE-19 cells against oxidative stress. Invest Ophthalmol Vis Sci 2011; 52: 5656
  • 17 Mannerström M, Zorn-Kruppa M, Diehl H, Engleke M, Toimela T, Mäenpää H, Huhtala A, Uusitalo H, Salminen L, Pappas P, Marselos M, Mäntylä M, Mäntylä E, Tähti H. Evaluation of the cytotoxicity of selected systemic and intravitreally dosed drugs in the cultures of human retinal pigment epithelial cell line and of pig primary retinal pigment epithelial cells. Toxicol In Vitro 2002; 16: 193-200
  • 18 Goldring MB, Birkhead JR, Suen LF, Yamin R, Mizuno S, Glowacki J, Arbiser JL, Apperley JF. Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest 1994; 94: 2307-2316
  • 19 de Pedro N, Cautain B, Cantizani J, Rodriguez L, Vicente F, Tualsi R, Koyyalamudi SR. In vitro neuroprotective effects of seven natural products against rotenone-induced toxicity in a SH-SY5Y neuroblastoma cells model for Parkinsonʼs disease. Pharmacologia 2016; 7: 361-370
  • 20 Watt K, Christofi N, Young R. The detection of antibacterial actions of whole herb tinctures using luminescent Escherichia coli . Phytother Res 2007; 21: 1193-1199
  • 21 Bartolome A, Macalino B, Pastoral IL, Sevilla F. Antioxidant Assay using engineered bioluminescent Eschericia coli . In: Savitsky AP, Wachter R. eds. Proceedings of SPIE, Vol. 6098, Genetically engineered Probes for biomedical Applications. San Jose, California, United States: SPIE Publications; 2006: 60980J
  • 22 Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güçlü K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl Chem 2013; 85: 957-998
  • 23 Carrasco-Castilla J, Hernández-Álvarez AJ, Jiménez-Martínez C, Jacinto-Hernández C, Alaiz M, Girón-Calle J, Vioque J, Dávila-Ortiz G. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chem 2012; 135: 1789-1795
  • 24 Hernández-Ledesma B, Dávalos A, Bartolomé B, Amigo L. Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J Agric Food Chem 2005; 53: 588-593
  • 25 Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J Agric Food Chem 2003; 51: 3661-3667
  • 26 Chen HM, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean β-conglycinin. J Agric Food Chem 1995; 43: 574-578
  • 27 Sánchez A, Vázquez A. Bioactive peptides: A review. Food Qual Saf 2017; 1: 29-46
  • 28 Koskimäki JJ, Kajula M, Hokkanen J, Ihantola EL, Kim JH, Hautajärvi H, Hankala E, Suokas M, Pohjanen J, Podolich O, Kozyrovska N, Turpeinen A, Pääkkönen M, Mattila S, Campbell BC, Pirttilä AM. Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals. Nat Chem Biol 2016; 12: 332-338
  • 29 Pocsi I, Prade RA, Penninckx MJ. Glutathione, altruistic metabolite in fungi. Adv Microb Physiol 2004; 49: 1-76
  • 30 Salas CE, Badillo-Corona JA, Ramirez-Sotelo G, Oliver-Salvador C. Biologically active and antimicrobial peptides from plants. Biomed Res Int 2015; 2015: 102129
  • 31 Bondaryk M, Staniszewska M, Zielinska P, Urbanczyk-Lipkowska Z. Natural antimicrobial peptides as inspiration for design of a new generation antifungal compounds. J Fungi 2017; 3: 1-36
  • 32 Kombrink A, Tayyrov A, Essig A, Stöckli M, Micheller S, Hintze J, van Heuvel Y, Dürig N, Lin CW, Kallio PT, Aebi M, Künzler M. Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria. ISME J 2018; 13: 588-602
  • 33 Ries S, Wert V, OʼLeary NFD, Nair M. 9-β-L(+) Adenosine: A new naturally occurring plant growth substance elicited by triacontanol in rice. Plant Growth Regul 1990; 9: 263-273
  • 34 Pirttilä AM. Endophytic Bacteria in Tree Shoot Tissues and their Effects on Host. In: Pirttilä AM, Frank AC. eds. Endophytes of Forest Trees: Biology and Applications, Forestry Sciences, Vol. 80. Heidelberg: Springer; 2011: 139-149
  • 35 Osugi A, Sakakibara H. Q & A: How do plants respond to cytokinins and what is their importance?. BMC Biol 2015; 13: 102
  • 36 Willför SM, Ahotupa MO, Hemming JE, Reunanen MH, Eklund PC, Sjöholm RE, Eckerman CS, Pohjamo SP, Holmbom BR. Antioxidant activity of knotwood extractives and phenolic compounds of selected tree species. J Agric Food Chem 2003; 51: 7600-7606
  • 37 Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf B 2007; 60: 201-206
  • 38 Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 2010; 33: 453-467
  • 39 Obata T, Fernie AR. The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 2012; 69: 3225-3243
  • 40 de Pedro N, Cantizani J, Ortiz-López FJ, González-Menéndez V, Cautain B, Rodríguez L, Bills GF, Reyes F, Genilloud O, Vicente F. Protective effects of isolecanoric acid on neurodegenerative in vitro models. Neuropharmacology 2016; 101: 538-548
  • 41 Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 1996; 62: 155-169
  • 42 Tabachnick BG, Fidell LS. Using multivariate Statistics, 5th Edition. Boston: Allyn & Bacon; 2007
  • 43 Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc 1963; 58: 236-244
  • 44 Yeo D, Truxillo C. Applied clustering Techniques Course Notes. Cary, North Carolina: SAS Institute Inc.; 2005