CC BY-NC-ND 4.0 · Planta Medica International Open 2020; 07(03): e106-e113
DOI: 10.1055/a-1174-1197
Original Papers

Cytotoxic, Anti-bacterial, and Wound-healing Activity of Prenylated Phenols from the Kurdish Traditional Medicinal Plant Onobrychis Carduchorum (Fabaceae)

1   DISIT - Università del Piemonte Orientale, Alessandria, Italy
,
Faiq H. S. Hussain
2   Medical Analysis Department, Faculty of Science, Tishk International University, Erbil, Kurdistan Region-Iraq
,
Hawraz Ibrahim M. Amin
3   Chemistry Department, College of Science, Salahaddin University-Erbil, Erbil, Iraq
4   Department of Pharmacy, Paitaxt Technical Institute-Private, Erbil, Iraq
,
Elisa Bona
5   DISIT - Università del Piemonte Orientale, Vercelli, Italy
,
Elisa Gamalero
1   DISIT - Università del Piemonte Orientale, Alessandria, Italy
,
Novello Giorgia
1   DISIT - Università del Piemonte Orientale, Alessandria, Italy
,
Rosamaria Lappano
6   Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
,
Marianna Talia
6   Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
,
Marcello Maggiolini
6   Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
,
Miriam Bazzicalupo
7   DISTAV – Università degli Studi di Genova, Genova, Italy
,
Laura Cornara
7   DISTAV – Università degli Studi di Genova, Genova, Italy
› Author Affiliations
Funding: This work was financially supported by Tishk International University, Erbil, Iraq, and by the University of Eastern Piedmont (UPO), according to the Cultural Co-operation Framework Memorandum of Understanding between the two Institutions.

Abstract

Onobrychis carduchorum (Fabaceae) is a plant widely employed in Kurdish traditional medicine to cure wounds, inflammations, and other skin diseases. We could isolate ten different polyphenols from the acetone extract of this plant: 14 are isoflavones, having a genistein skeleton; 57 are flavanones, having a naringenin skeleton; and 810 are prenylated dihydro-stilbenes. In particular, 810 have been isolated, so far, only from Glycyrrhiza glabra (liquorice). Many of the above prenylated phenols showed significant toxicity on some human breast cancer cell lines, and a relevant growth inhibition of Staphylococcus aureus strains. In addition, 9 and 10 had marked wound healing activity. It is suggested that these bioactivities are responsible, at least partly, for the plant’s traditional use.

Supporting Information



Publication History

Received: 02 December 2019
Received: 23 January 2020

Accepted: 06 May 2020

Article published online:
05 June 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Toluei Z, Atri M, Ranjbar M, Wink M. Iranian Onobrychis carduchorum (Fabaceae) populations: Morphology, ecology and phylogeography. Plant Ecology Evol 2013; 146: 53-67
  • 2 Mükemre M, Behçet L, Çakilocioglu U. Ethnobotanical study on medicinal plants in villages of Çatak (Van, Turkey). J Ethnopharmacol 2015; 166: 361-374
  • 3 Dalar A, Mukemre M, Unal M, Ozgokce F. Traditional medicinal plants of Ağri Province, Turkey. J Ethnopharmacol 2018; 226: 56-72
  • 4 Ingham JL. Flavonoid and isoflavonoid compounds from the leaves of sainfoin (Onobrychis viciifolia). Z Naturforsch 1978; C33: 146-148
  • 5 Regos I, Urbanella A, Treutter D. Identification and quantification of phenolic compounds from the forage legume sainfoin (Onobrychis viciifolia). J Agric Food Chem 2009; 57: 5843-5852
  • 6 Marais JP, Mueller-Harvey I, Brandt EV, Ferreira D. Polyphenols, condensed tannins, and other natural products in Onobrychis viciifolia (Sainfoin). J Agric Food Chem 2000; 48: 3440-3447
  • 7 Liu XL, Hao YQ, Jin L, Xu ZJ, McAllister TA, Wang Y. Anti-Escherichia coli O157:H7 properties of purple prairie clover and sainfoin condensed tannins. Molecules 2013; 18: 2183-2199
  • 8 Paolini V, Fouraste I, Hoste H. In vitro effects of three woody plant and sainfoin extracts on 3rd-stage larvae and adult worms of three gastrointestinal nematodes. Parasitology 2004; 129: 69-77
  • 9 Barrau E, Fabre N, Fouraste I, Hoste H. Effect of bioactive compounds from Sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides. Parasitology 2005; 131: 531-538
  • 10 Mbaveng AT, Kuete V, Mapunya BM, Beng VP, Nkengfack AE, Marion Meyer JJ, Lall N. Evaluation of four Cameroonian medicinal plants for anticancer, antigonorrheal and antireverse transcriptase activities. Environm Toxicol Pharmacol 2011; 32: 162-167
  • 11 Ashidi JS, Houghton PJ, Hylands PJ, Efferth T. Ethnobotanical survey and cytotoxicity testing of plants of South-western Nigeria used to treat cancer, with isolation of cytotoxic constituents from Cajanus cajan Millsp. leaves. J Ethnopharmacol 2010; 128: 501-512
  • 12 Peng F, Meng CW, Zhou QM, Chen JP, Xiong L. Cytotoxic evaluation against breast cancer cells of isoliquiritigenin analogues from Spatholobus suberectus and their synthetic derivatives. J Nat Prod 2016; 79: 248-251
  • 13 Maggiolini M, Vivacqua A, Fasanella G, Recchia AG, Sisci D, Pezzi V, Montanaro D, Musti AM, Picard D, Ando S. The G protein-coupled receptor GP30 mediated c-fos up-regulation by 17 beta-estradiol and phytoestrogens in breast cancer cells. J Biol Chem 2004; 279: 27008-27016
  • 14 Markham KR, Mabry TJ, Swift TW. New isoflavones from the genus Baptisia (Leguminosae). Phytochemistry 1968; 7: 803-808
  • 15 Kinoshita T, Ichinose K, Takahashi C, Ho FC, Wu JB, Sankawa U. Chemical studies on Sophora tomentosa: The isolation of a new class of isoflavonoid. Chem Pharm Bull 1990; 38: 2756-2759
  • 16 Tahara S, Ingham JL, Nakahara S, Mizutani J, Harborne JB. Antifungal isoflavones in lupines. Part 2. Fungitoxic dihidrofuranoisoflavones and related compounds in white lupine, Lupinus albus. Phytochemistry 1984; 23: 1889-1900
  • 17 Erasto P, Bojase-Moleta G, Majinda RRT. Antimicrobial and antioxidant flavonoids from the root wood of Bolusanthus speciosus. Phytochemistry 2004; 65: 875-880
  • 18 Oyama SO, De Souza LA, Baldoqui DC, Sarragiotto MH, Silva AA. Prenylated flavonoids from Maclura tinctoria fruits. Quimica Nova 2013; 36: 800-802
  • 19 Djiogue S, Njamen D, Halabalaki M, Kretzschmar G, Beyer A, Mbanya JC, Skaltsounis AL, Vollmer G. Estrogenic properties of naturally occurring prenylated isoflavones in U2OS human osteosarcoma cells. J Steroid Biochem Mol Biol 2010; 120: 184-191
  • 20 Nkengfack AE, Sanson DR, Tempesta MS. Two new flavonoids from Erythrina eriotriochia. J Nat Prod 1989; 52: 320-324
  • 21 Lin CC, Lee HY, Chang CH, Namba T, Hattori M. Evaluation of the liver protective principles from the root of Cudrania cochinchinensis var. gerontogea. Phytotherapy Res 1996; 10: 13-17
  • 22 Peralta MA, Santi MD, Agnese AM, Cabrera JL, Ortega MG. Flavanoids from Dalea elegans: Chemical reassignment and determination of kinetics parameters related to their anti-tyrosinase activity. Phytochemistry Lett 2014; 10: 260-267
  • 23 Aru B, Guezelmeric E, Akguel A, Demirel GY, Kirmizibekmez H. Antiproliferative activity of chemically characterized propolis from Turkey and its mechanisms of action. Chem Biodiv 2019; 16: e1900189
  • 24 Braz Filho R, Gottlieb OR, Mourăo AP. A stilbene and two flavanones from Derris rariflora. Phytochemistry 1975; 14: 261-263
  • 25 Popoola OK, Marnewick JL, Rautenbach F, Ameer F, Iwuoha EI, Hussein AA. Inhibition of oxidative stress and skin aging-related enzymes by prenylated chalcones and other flavonoids from Helichrysum teretifolium. Molecules 2015; 20: 7143-7155
  • 26 Effenberger KE, Westendorf J. Hop-derived phytoestrogens alter osteoblastic phenotype and gene expression. In: Preedy V, Editor Beer in health and disease prevention. Burlington: Elsevier; 2009: 735–745
  • 27 Harrison LJ, Leong LS, Leong YW, Sia GL, Sim KY, Tan HTW. Xanthone and flavonoid constituents of Garcinia dulcis (Guttiferae). Nat Prod Lett 1994; 5: 111-116
  • 28 Siddiqui BS, Tariq Ali S, Rasheed M, Kardar MN. Chemical constituents of the flowers of Azadirachia indica. Helv Chim Acta 2003; 86: 2787-2796
  • 29 Murphy BT, Cao S, Norris A, Miller JS, Ratovoson F, Andriantsiferana R, Rasamison VE, Kingston DGI. Cytotoxic compounds of Schizolaena hystrix from the Madagascar rainforest. Planta Med 2006; 72: 1235-1238
  • 30 Biondi DM, Rocco C, Ruberto G. New dihydrostilbenes derivatives from the leaves of Glycyrrhiza glabra and evaluation of their anti-oxidant activity. J Nat Prod 2003; 66: 477-480
  • 31 Siracusa L, Saija A, Cristani M, Cimino F, D’Arrigo M, Trombetta D, Rao F, Ruberto G. Phytocomplexes from liquorice (Glycyrrhiza glabra L.) leaves--chemical characterization and evaluation of their antioxidant, anti-genotoxic and anti-inflammatory activity. Fitoterapia 2011; 82: 546-556
  • 32 Martini E. La fitoterapia popolare in Val Borbera (Appennino Ligure). Webbia 1981; 35: 187-205
  • 33 Kotian S, Bhat K, Pai S, Nayak J, Souza A, Gourisheti K, Padma D. The Role of natural medicines on wound healing: A biomechanical, histological, biochemical and molecular study. Ethiop J Health Sci 2018; 28: 759-770
  • 34 Oloumi MM, Derakhshanfar A, Nikpoor A. Healing potential of liquorice root extract on dermal wounds in rats. J Vet Res 2007; 62: 147-151
  • 35 Liu J, Jiang W, Xia Y, Wang X, Shen G, Pang Y. Genistein-specific G6DT gene for the inducible production of wighteone in Lotus japonicus. Plant Cell Physiol 2018; 59: 128-141
  • 36 Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig N. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988; 106: 761-771
  • 37 Muniandy K, Sivapragasam G, Tan W, Kumar S, Me N, Chandramohan G, Al-Numair K, Arulselvan P. In vitro wound healing potential of stem extract of alternanthera sessilis. Evid Based Complement Alternat Med 2018; 2018: 3142073