Rofo 2020; 192(09): 847-853
DOI: 10.1055/a-1167-8402
Review

KI in der Radiologie: Wo stehen wir in der MS-Bildgebung?

Article in several languages: English | deutsch
Paul Eichinger
1   Department of Radiology, Klinikum rechts der Isar der Technischen Universität München, München, Germany
,
Claus Zimmer
2   Department of Neuroradiology, Klinikum rechts der Isar der Technischen Universität München, München, Germany
,
Benedikt Wiestler
2   Department of Neuroradiology, Klinikum rechts der Isar der Technischen Universität München, München, Germany
› Author Affiliations

Zusammenfassung

Hintergrund MRT-Untersuchungen sind ein zentraler Baustein in der Diagnostik bei Multipler Sklerose (MS). Dies gilt sowohl für das Erstereignis wie auch für die Verlaufsbeurteilung. In den vergangenen Jahren wurden zunehmend Algorithmen zur Analyse von MRT-Daten bei MS entwickelt. Diese Übersichtsarbeit stellt die wesentlichen Anwendungsfelder unter besonderer Berücksichtigung von Algorithmen aus dem Bereich der Künstlichen Intelligenz (KI) vor.

Methoden Relevante Studien wurden durch eine Literatursuche in anerkannten Datenbanken sowie durch Querverweise in so gefundenen Studien identifiziert. Dabei wurde Literatur berücksichtigt, die bis November 2019 erschienen war, ein besonderes Augenmerk lag auf kürzlich erschienenen Studien aus den Jahren 2018 und 2019.

Ergebnisse Viele Studien haben Lösungen zur optimierten Läsionsvisualisierung oder der Segmentierung von Läsionen entwickelt. Hier liegen bereits Werkzeuge vor, die diese Aufgaben mit hoher Genauigkeit bewerkstelligen können und damit mittelbar eine reproduzierbare, quantitative Auswertung der Läsionslast ermöglichen. Einige Arbeiten gingen einem Radiomics-Ansatz nach und untersuchten die Vorhersage klinischer Endpunkte, z. B. die Konversion von einem klinisch isolierten Syndrom zu definitiver MS. Zuletzt liegen erste Arbeiten vor, die synthetisch erstellte Bildgebung untersuchen, also solche Bilder, die basierend auf tatsächlich gemessenen MRT-Sequenzen von Maschinenlernalgorithmen generiert werden und die Kontraste zwischen Läsionen und normalem Hirnparenchym optimieren.

Schlussfolgerung Computerunterstützte Bildanalyse und KI sind hochaktuelle Themen in der MS-Bildgebung. Einzelne Anwendungen sind dabei bereits jetzt prinzipiell in der klinischen Routine einsetzbar. Eine wesentliche Herausforderung für die Zukunft besteht vor allem darin, bessere Prädiktionen klinischer Verläufe und entsprechende Hilfestellungen in der Findung einer optimalen Therapie auf patientenindividueller Ebene bereitzustellen. Außerdem rücken durch die Erfolge auf technologischer Ebene zunehmend Fragen über die Integration in klinisch-radiologische Abläufe in den Vordergrund.

Kernaussagen:

  • Computeralgorithmen haben einen zunehmenden Einfluss auf die Auswertung von MRT-Bildgebung bei Multipler Sklerose.

  • Künstliche Intelligenz wird zunehmend für solche Algorithmen verwendet.

  • Wesentliche Anwendungen sind die Läsionssegmentierung, die Prädiktion klinischer Parameter sowie die Generierung synthetischer Bildgebung.

Zitierweise

  • Eichinger P, Zimmer C, Wiestler B. AI in Radiology: Where are we today in Multiple Sclerosis Imaging?. Fortschr Röntgenstr 2020; 192: 847 – 853



Publication History

Received: 30 December 2019

Accepted: 17 April 2020

Article published online:
08 July 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Thompson AJ, Baranzini SE, Geurts J. et al. Multiple sclerosis. Lancet 2018; 391: 1622-1636
  • 2 Thompson AJ, Banwell BL, Barkhof F. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17: 162-173
  • 3 Kappos L, De Stefano N, Freedman MS. et al. Inclusion of brain volume loss in a revised measure of “no evidence of disease activity” (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler 2016; 22: 1297-1305
  • 4 Cortese R, Collorone S, Ciccarelli O. et al. Advances in brain imaging in multiple sclerosis. Ther Adv Neurol Disord 2019; 12 DOI: 10.1177/1756286419859722.
  • 5 Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444
  • 6 Hosny A, Parmar C, Quackenbush J. et al. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18: 500-510
  • 7 Noble WS. What is a support vector machine?. Nat Biotechnol 2006; 24: 1565-1567
  • 8 Breiman L. Random forests. Mach Learn 2001; 45: 5-32
  • 9 Zaharchuk G, Gong E, Wintermark M. et al. Deep learning in neuroradiology. Am J Neuroradiol 2018; 39: 1776-1784
  • 10 Moraal B, Meier DS, Poppe PA. et al. Subtraction MR images in a multiple sclerosis multicenter clinical trail setting. Radiology 2009; 250: 506-514
  • 11 Eichinger P, Wiestler H, Zhang H. et al. A novel imaging technique for better detecting new lesions in multiple sclerosis. J Neurol 2017; 264: 1909-1918
  • 12 Eichinger P, Schön S, Pongratz V. et al. Accuracy of unenhanced MRI in the detection of new brain lesions in multiple sclerosis. Radiology 2019; 291: 429-435
  • 13 Eichinger P, Hock A, Schön S. et al. Acceleration of Double Inversion Recovery Sequences in Multiple Sclerosis with Compressed Sensing. Invest Radiol 2019; 54: 319-324
  • 14 Schmidt P, Gaser C, Arsic M. et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. Neuroimage 2012; 59: 3774-3783
  • 15 Danelakis A, Theoharis T, Verganelakis DA. Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Comput Med Imaging Graph 2018; 70: 83-100
  • 16 Li H, Jiang G, Zhang J. et al. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images. Neuroimage 2018; 183: 650-665
  • 17 Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2015: 234-241
  • 18 Gabr RE, Coronado I, Robinson M. et al Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study. Mult Scler J 2019; DOI: 10.1177/1352458519856843. [epub ahead of print]
  • 19 Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology 2016; 278: 563-577
  • 20 Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol 2012; 11: 157-169
  • 21 Kuhle J, Disanto G, Dobson R. et al. Conversion from clinically isolated syndrome to multiple sclerosis: A large multicantre study. Mult Scler 2015; 21: 1013-1024
  • 22 Comi G, Filippi M, Barkhof F. et al. Effect of early interferon treatment on conversion to definite multiple sclerosis: A randomised study. Lancet 2001; 357: 1576-1582
  • 23 Comi G, Martinelli V, Rodegher M. et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet 2009; 374: 1503-1511
  • 24 Zhang H, Alberts E, Pongratz V. et al. Predicting conversion from clinically isolated syndrome to multiple sclerosis–An imaging-based machine learning approach. NeuroImage Clin 2019; 21: 101593
  • 25 Bendfeldt K, Taschler B, Gaetano L. et al. MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry. Brain Imaging Behav 2019; 13: 1361-1374
  • 26 Tallantyre EC, Brookes MJ, Dixon JE. et al. Demonstrating the perivascular distribution of ms lesions in vivo with 7-tesla MRI. Neurology 2008; 70: 2076-2078
  • 27 Wottschel V, Chard DT, Enzinger C. et al. SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage Clin 2019; 24 DOI: 10.1016/j.nicl.2019.102011.
  • 28 Ma X, Zhang L, Huang D. et al. Quantitative radiomic biomarkers for discrimination between neuromyelitis optica spectrum disorder and multiple sclerosis. J Magn Reson Imaging 2019; 49: 1113-1121
  • 29 Liu Y, Dong D, Zhang L. et al. Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder. Eur Radiol 2019; 29: 4670-4677
  • 30 Eshaghi A, Wottschel V, Cortese R. et al. Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology 2016; 87: 2463-2470
  • 31 Yoo Y, Tang LYW, Brosch T. et al. Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. NeuroImage Clin 2018; 17: 169-178
  • 32 Zhang YD, Pan C, Sun J. et al. Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J Comput Sci 2018; 28: 1-10
  • 33 Wang SH, Tang C, Sun J. et al. Multiple sclerosis identification by 14-layer convolutional neural network with batch normalization, dropout, and stochastic pooling. Front Neurosci 2018; 12: 212
  • 34 Eitel F, Soehler E, Bellmann-Strobl J. et al. Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. NeuroImage Clin 2019; 24 DOI: 0.1016/j.nicl.2019.102003.
  • 35 Weygandt M, Hackmack K, Pfüller C. et al. MRI pattern recognition in multiple sclerosis normal-appearing brain areas. PLoS One 2011; 6: e21138
  • 36 Hackmack K, Paul F, Weygandt M. et al. Multi-scale classification of disease using structural MRI and wavelet transform. Neuroimage 2012; 62: 48-58
  • 37 Hackmack K, Weygandt M, Wuerfel J. et al. Can we overcome the “clinico-radiological paradox” in multiple sclerosis?. J Neurol 2012; 259: 2151-2160
  • 38 Li H, Paetzold JC, Sekuboyina A. et al. DiamondGAN: Unified Multi-modal Generative Adversarial Networks for MRI Sequences Synthesis. 2019: 795-803
  • 39 Finck T, Li H, Grundl L. et al. Improving Multiple Sclerosis lesion detection with synthetic Double Inversion Recovery images. Invest Radiol 2020; DOI: 10.1097/RLI.0000000000000640.
  • 40 Geurts JJG, Pouwels PJW, Uitdehaag BMJ. et al. Intracortical lesions in multiple sclerosis: Improved detection with 3D double inversion-recovery MR imaging. Radiology 2005; 236: 254-260
  • 41 Wattjes MP, Lutterbey GG, Gieseke J. et al. Double inversion recovery brain imaging at 3T: Diagnostic value in the detection of multiple sclerosis lesions. Am J Neuroradiol 2007; 28: 54-59
  • 42 Seewann A, Kooi EJ, Roosendaal SD. et al. Postmortem verification of MS cortical lesion detection with 3D DIR. Neurology 2012; 78: 302-308
  • 43 Pinto Dos Santos D, Hempel JM, Mildenberger P. et al. Structured Reporting in Clinical Routine. RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgeb Verfahren 2019; 191: 33-39
  • 44 Cerqueira JJ, Compston DAS, Geraldes R. et al. Time matters in multiple sclerosis: Can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis?. J Neurol Neurosurg Psychiatry 2018; 89: 844-850
  • 45 Kavaliunas A, Manouchehrinia A, Stawiarz L. et al. Importance of early treatment initiation in the clinical course of multiple sclerosis. Mult Scler 2017; 23: 1233-1240
  • 46 Tur C, Kalincik T, Oh J. et al. Head-to-head drug comparisons in multiple sclerosis: Urgent action needed. Neurology 2019; 93: 793-809
  • 47 Aymerich Martínez F, Hlinkova J, Auger C. et al. Longitudinal study to measure iron deposit in basal ganglia and related structures in patients with clinically isolated syndrome. Mult Scler 2017; 23: 243-244
  • 48 McDonald RJ, McDonald JS, Kallmes DF. et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015; 275: 772-782
  • 49 Gupta A, Al-Dasuqi K, Xia F. et al. The use of noncontrast quantitative MRI to detect gadolinium-enhancing multiple sclerosis brain lesions: A systematic review and meta-analysis. Am J Neuroradiol 2017; 38: 1317-1322
  • 50 Kleesiek J, Morshuis JN, Isensee F. et al. Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study. Invest Radiol 2019; 54: 653-660