Int J Sports Med 2020; 41(12): 867-872
DOI: 10.1055/a-1165-2040
Clinical Sciences

Hemostatic Adaptations to High Intensity Interval Training in Healthy Adult Men

James R. Sackett
1   Integrative Exercise Physiology Laboratory, Ball State University, Muncie, United States
,
Dan P. Farrell
1   Integrative Exercise Physiology Laboratory, Ball State University, Muncie, United States
,
Paul R. Nagelkirk
1   Integrative Exercise Physiology Laboratory, Ball State University, Muncie, United States
› Institutsangaben

Abstract

Regular exercise is theorized to reduce cardiovascular risk by attenuating coagulation and augmenting fibrinolysis. However, these adaptations have not been consistently observed during traditional exercise programs. The purpose of this study was to examine hemostatic adaptations in healthy men following four (4W) and eight (8W) weeks of high intensity interval training. Twenty-one men (age=25±1 y; body mass index=26.5±6.4 kg/m2) completed eight weeks, three days/week of high intensity interval training on a cycle ergometer. Activated partial thromboplastin time, prothrombin time, and plasma concentrations of thrombin-antithrombin III, fibrinogen, tissue plasminogen activator, and plasminogen activator inhibitor-1 were assessed at baseline (BL), 4W, and 8W. Repeated measures ANOVA were used to determine potential effects of training. There were no significant changes observed for activated partial thromboplastin time (BL=43.3±5.5, 4W=43.2±5.1, 8W=44.2±6.4 s); prothrombin time (BL=13.2±0.9, 4W=13.0±0.6, 8W=13.1±0.8 s); thrombin-antithrombin III (BL=6.0±2.3, 4W=5.8±2.3, 8W=5.6±3.1 ng/mL); tissue plasminogen activator (BL=9.7±3.3, 4W=9.4±3.2, 8W=8.7±2.8 ng/mL); and plasminogen activator inhibitor-1 (BL=19.0±17.5, 4W=19.3±17.0, 8W=18.9±18.9 ng/mL) (all p>0.05). Fibrinogen was significantly lower at 4W (238.6±70.3 mg/dL) compared to BL (285.0±82.1 mg/dL; p<0.05) and 8W (285.3±83.2 mg/dL; p<0.05). These findings indicate that eight weeks of high intensity interval training does not influence coagulation potential and/or stimulate fibrinolysis.



Publikationsverlauf

Eingereicht: 17. Dezember 2019

Angenommen: 13. April 2020

Artikel online veröffentlicht:
07. Juli 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Folsom AR, Rosamond WD, Shahar E. et al. Prospective study of markers of hemostatic function with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Circulation 1999; 100: 736-742
  • 2 Killewich L, Gardner A, Macko R. et al. Progressive intermittent claudication is associated with impaired fibrinolysis. J Vasc Surg 1998; 27: 645-650
  • 3 van der Bom J, Bots M, Haverkate F. et al. Fibrinolytic activity in peripheral atherosclerosis in the elderly. Thromb Haemost 1999; 81: 275-280
  • 4 Thompson S, Kienast J, Pyke S. et al. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. N Engl J Med 1995; 332: 635-641
  • 5 Hilberg T, Nowacki PE, Muller-Berghaus G. et al. Changes in blood coagulation and fibrinolysis associated with maximal exercise and physical conditioning in women taking low dose oral contraceptives. J Sci Med Sport 2000; 3: 383-390
  • 6 Lin X, El-Sayed MS, Waterhouse J. et al. Activation and disturbance of blood haemostasis following strenuous physical exercise. Int J Sports Med 1999; 20: 149-153
  • 7 Yarnell JW, Sweetnam PM, Rumley A. et al. Lifestyle and hemostatic risk factors for ischemic heart disease: the Caerphilly Study. Arterioscler Thromb Vasc Biol 2000; 20: 271-279
  • 8 Womack JC, Nagelkirk PR, Coughlin AM. Exercise-induced changes in coagulation and fibrinolysis in healthy populations and patients with cardiovascular disease. Sports Med 2003; 33: 795-807
  • 9 van den Burg PJ, Hospers JE, Mosterd WL. et al. Aging, physical conditioning, and exercise-induced changes in hemostatic factors and reaction products. J Appl Physiol (1985) 2000; 88: 1558-1564
  • 10 Lockard MM, Gopinathannair R, Paton CM. et al. Exercise training-induced changes in coagulation factors in older adults. Med Sci Sports Exerc 2007; 39: 587-592 DOI: 10.1249/mss.0b013e31802eff4b.
  • 11 Ernst E, Schmid M. Regular aerobic exercise lowers fibrinogen levels: results of a pilot study. European Journal of Physical Medicine & Rehabilitation 1993; 3: 196-198
  • 12 Wosornu D, Allardyce W, Ballantyne D. et al. Influence of power and aerobic exercise training on haemostatic factors after coronary artery surgery. Br Heart J 1992; 68: 181-186
  • 13 Nagelkirk PR, Franklin BA, Coughlin AM. et al. Discordant hemodynamic and fibrinolytic adaptations following a 6-week cardiac rehabilitation program. Prev Cardiol 2007; 10: 196-203
  • 14 el-Sayed MS, Lin X, Rattu AJ. Blood coagulation and fibrinolysis at rest and in response to maximal exercise before and after a physical conditioning programme. Blood Coagul Fibrinolysis 1995; 6: 747-752
  • 15 el-Sayed MS. Exercise intensity-related responses of fibrinolytic activity and vasopressin in man. Med Sci Sports Exerc 1990; 22: 494-500
  • 16 Womack CJ, Rasmussen JM, Vickers DG. et al. Changes in fibrinolysis following exercise above and below lactate threshold. Thromb Res 2006; 118: 263-268
  • 17 el-Sayed MS. Effects of exercise on blood coagulation, fibrinolysis and platelet aggregation. Sports Med 1996; 22: 282-298
  • 18 Dougherty CM, Glenny R, Kudenchuk PJ. Aerobic exercise improves fitness and heart rate variability after an implantable cardioverter defibrillator. J Cardiopulm Rehabil Prev 2008; 28: 307-311 doi:10.1097/01.HCR.0000336140.56322.1f
  • 19 Lee KW, Lip GY. Effects of lifestyle on hemostasis, fibrinolysis, and platelet reactivity: a systematic review. Arch Intern Med 2003; 163: 2368-2392 doi:10.1001/archinte.163.19.2368
  • 20 Vatten LJ, Nilsen TI, Romundstad PR. et al. Adiposity and physical activity as predictors of cardiovascular mortality. Eur J Cardiovasc Prev Rehabil 2006; 13: 909-915 DOI: 10.1097/01.hjr.0000239463.80390.52.
  • 21 Gibala MJ, Little JP, van Essen M. et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 2006; 575: 901-911 DOI: 10.1113/jphysiol.2006.112094.
  • 22 Helgerud J, Hoydal K, Wang E. et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 2007; 39: 665-671 DOI: 10.1249/mss.0b013e3180304570.
  • 23 Tjonna AE, Lee SJ, Rognmo O. et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 2008; 118: 346-354 DOI: 10.1161/CIRCULATIONAHA.108.772822.
  • 24 Wisloff U, Stoylen A, Loennechen JP. et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 2007; 115: 3086-3094 DOI: 10.1161/CIRCULATIONAHA.106.675041.
  • 25 Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain?. Exerc Sport Sci Rev 2008; 36: 58-63 doi:10.1097/JES.0b013e318168ec1f. 00003677-200804000-00003 [pii]
  • 26 Moholdt TT, Amundsen BH, Rustad LA. et al. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. Am Heart J 2009; 158: 1031-1037 DOI: 10.1016/j.ahj.2009.10.003.
  • 27 Warburton DE, McKenzie DC, Haykowsky MJ. et al. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol 2005; 95: 1080-1084 DOI: 10.1016/j.amjcard.2004.12.063.
  • 28 Whyte LJ, Gill JM, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism 2010; 59: 1421-1428 doi:10.1016/j.metabol.2010.01.002. S0026-0495(10)00017-X [pii]
  • 29 Green DJ, O’Driscoll G, Joyner MJ. et al. Exercise and cardiovascular risk reduction: time to update the rationale for exercise?. J Appl Physiol (1985) 2008; 105: 766-768 DOI: 10.1152/japplphysiol.01028.2007.
  • 30 Vita JA. Endothelial function and clinical outcome. Heart 2005; 91: 1278-1279 doi:10.1136/hrt.2005.061333
  • 31 Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990; 81: 1161-1172
  • 32 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817 doi:10.1055/a-1015-3123
  • 33 Medicine ACoS. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2017
  • 34 Bar-Or O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med 1987; 4: 381-394
  • 35 Dotan R, Bar-Or O. Load optimization for the wingate anaerobic test. Eur J Appl Physiol Occup Physiol 1983; 51: 409-417
  • 36 Van Beaumont W. Evaluation of hemoconcentration from hematocrit measurements. J Appl Physiol 1972; 32: 712-713
  • 37 Hilberg T, Menzel K, Wehmeier UF. Endurance training modifies exercise-induced activation of blood coagulation: RCT. Eur J Appl Physiol 2013; 113: 1423-1430 doi:10.1007/s00421-012-2564-9
  • 38 Suzuki T, Yamauchi K, Yamada Y. et al. Blood coagulability and fibrinolytic activity before and after physical training during the recovery phase of acute myocardial infarction. Clin Cardiol 1992; 15: 358-364
  • 39 Sakr HF, Abbas AM, Haidara MA. Swimming, but not vitamin E, ameliorates prothrombotic state and hypofibrinolysis in a rat model of nonalcoholic fatty liver disease. J Basic Clin Physiol Pharmacol 2018; 29: 61-71 doi:10.1515/jbcpp-2017-0069
  • 40 Lakka TA, Salonen JT. Moderate to high intensity conditioning leisure time physical activity and high cardiorespiratory fitness are associated with reduced plasma fibrinogen in eastern Finnish men. J Clin Epidemiol 1993; 46: 1119-1127
  • 41 Ernst E. Regular exercise reduces fibrinogen levels: a review of longitudinal studies. Br J Sports Med 1993; 27: 175-176
  • 42 Ponjee GA, Janssen GM, van Wersch JW. Prolonged endurance exercise and blood coagulation: a 9 month prospective study. Blood Coagul Fibrinolysis 1993; 4: 21-25
  • 43 Davalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol 2012; 34: 43-62 doi:10.1007/s00281-011-0290-8
  • 44 Van den Burg PJ, Hospers JE, van Vliet M. et al. Effect of endurance training and seasonal fluctuation on coagulation and fibrinolysis in young sedentary men. J Appl Physiol (1985) 1997; 82: 613-620
  • 45 Stratton JR, Chandler WL, Schwartz RS. et al. Effects of physical conditioning on fibrinolytic variables and fibrinogen in young and old healthy adults. Circulation 1991; 83: 1692-1697
  • 46 Andrew M, Carter C, O’Brodovich H. et al. Increases in factor VIII complex and fibrinolytic activity are dependent on exercise intensity. J Appl Physiol (1985) 1986; 60: 1917-1922 DOI: 10.1152/jappl.1986.60.6.1917.
  • 47 Rosing DR, Brakman P, Redwood DR. et al. Blood fibrinolytic activity in man. Diurnal variation and the response to varying intensities of exercise. Circ Res 1970; 27: 171-184