Deutsche Zeitschrift für Onkologie 2020; 52(02): 51-56
DOI: 10.1055/a-1162-2469
Forschung

Immunrelevante Mikronährstoffe bei viralen Atemwegsinfektionen

Immune-relevant Micronutrients for Viral Respiratory Infections
Uwe Gröber
1   AMM – Akademie für Mikronährstoffmedizin, Essen
,
Peter Holzhauer
1   AMM – Akademie für Mikronährstoffmedizin, Essen
2   Onkologisches Kompetenzzentrum Klinik Bad Trissl, Oberaudorf
,
Klaus Kisters
1   AMM – Akademie für Mikronährstoffmedizin, Essen
3   Medizinische Klinik I, St. Anna Hospital, Herne
› Author Affiliations

ZUSAMMENFASSUNG

Ende 2019 nahm eine neue Coronavirus-Pandemie in der chinesischen Stadt Wuhan in der Provinz Hubei ihren Lauf. Der klinische Verlauf der durch SARS-CoV-2 ausgelösten Lungenerkrankung Covid-19 ist unterschiedlich. Einige Infizierte entwickeln nur leichte oder überhaupt keine Symptome. Bei anderen kommt es rasch zu einem akuten Lungenversagen und zum Tod. Über 80% der Covid-19-Erkrankungen treten bei älteren Menschen (±70 Jahre) mit Grunderkrankungen auf, wie KHK, Krebs, Diabetes mellitus oder zerebrovaskulären Veränderungen (z. B. Demenz). Neben entsprechenden Hygienemaßnahmen, dem individuellen Sozialverhalten, erfolgt derzeit über die Medien kein Hinweis auf die physiologische Bedeutung immunrelevanter Mikronährstoffe, mit der das Immunsystem gegen virale Atemwegserkrankungen unterstützt und Begleitkomplikationen verringert werden könnten. Deshalb sollte bei Covid-19-Patienten grundsätzlich nicht nur der Makonährstoff-, sondern auch der Mikronährstoff-Status labordiagnostisch objektiviert (z. B. 25(OH)D, Selen, Omega-3-Index) und gegebenenfalls gezielt kompensiert werden.

ABSTRACT

Worldwide the pandemic of Covid-19 spreads rapidly and has an enormous public health impact with substantial fatal outcomes especially in high-risk groups, such as older people and patients with comorbidities like diabetes, dementia or cancer. In the absence of a vaccine against Covid-19 there is an urgent need to find supportive therapies that can stabilize the immune system and can help to deal with the infection. As is well known the incidence of malnutrition in German geriatric clinics ranges up to 60% among the hospitalized elderly population. The nutritional (=macro- and micronutrient) status of each infected patient should be evaluated before the administration of general treatments. In this context the role of immune-relevant micronutrients, such as vitamin D, retinol, vitamin C, selenium and zinc is of special importance. The laboratory assessment of 25(OH)D, selenium or omega-3-index is therefore mandatory. Micronutrient deficiencies should be right away compensated by individual supplementation.



Publication History

Article published online:
28 June 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Biesalski HK, Bischoff SC. Hrsg Ernährungsmedizin. Nach dem Curriculum Ernährungsmedizin der Bundesärztekammer. 4. Aufl.. Stuttgart: Thieme; 2010
  • 2 Li Q, Guan X, Wu P. et al. Early transmission dynamics in Wuhan, China, of novel Coronavirus-infected pneumonia. N Engl J Med 2020; 382: 1199-1207
  • 3 Deutschlandfunk: Covid-19 RKI: Corona-Tote in Deutschland derzeit im Durchschnitt 82 Jahre alt, vom 09 April 2020
  • 4 Küpper C. Mangelernährung im Alter. Ernährungs Umschau 2010; 57: 256-262
  • 5 Katsanos CS, Kobayashi H, Sheffield-Moore M. et al. Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr 2005; 82: 1065-1073
  • 6 Diekmann R, Bauer J. Proteinbedarf älterer Menschen. DMW – Deutsche Medizinische Wochenschrift 2014; 139: 239-242
  • 7 Pennings B, Boirie Y, Senden JM. et al. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr 2011; 93: 997-1005
  • 8 Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266-281
  • 9 Gröber U, Holick MF. Vitamin D: Die Heilkraft des Sonnenvitamins. Stuttgart: Wissenschaftl. Verlagsges; 2020
  • 10 Cashman KD, Dowling KG, Škrabáková Z. et al. Vitamin D deficiency in Europe: pandemic?. Am J Clin Nutr 2016; 103: 1033-1044
  • 11 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz Nationale Verzehrsstudie II. Max Rubner-Institut; 2008
  • 12 Imdad A, Mayo-Wilson E, Herzer K. et al. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database of Systematic Reviews 2017; Issue 3: CD008524 DOI: 10.1002/14651858.CD008524.pub3.
  • 13 Jee J, Hoet AE, Azevedo MP. et al. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine. Am J Vet Res 2013; 74: 1353-1362
  • 14 Trottier C, Colombo M, Mann KK. et al. Retinoids inhibit measles virus through a type I IFN-dependent bystander effect. FASEB J 2009; 23: 3203-3212
  • 15 Patel N, Penkert RR, Jones BG. et al. Baseline serum vitamin A and D levels determine benefit of oral vitamin A&D supplements to humoral immune responses following pediatric influenza vaccination. Viruses 2019; 11: 907
  • 16 Gruber-Bzura BM. Vitamin D and influenza – prevention or therapy?. Int J Mol Sci 2018; 19: 2419
  • 17 Grant WB, Lahore H, McDonnell SL. et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12: 988
  • 18 Mousavi S, Bereswill S, Heimesaat MM. Immunomodulatory and antimicrobial effects of vitamin C. Eur J Microbiol Immunol (Bp) 2019; 9: 73-79
  • 19 Colunga Biancatelli RML, Berrill M, Marik PE. The antiviral properties of vitamin C. Expert Rev Anti Infect Ther 2020; 18: 99-101
  • 20 Elste V, Troesch B, Eggersdorfer M, Weber P. Emerging evidence on neutrophil motility supporting its usefulness to define vitamin C intake requirements. Nutrients 2017; 9: 503
  • 21 Hemilä H. Vitamin C and SARS coronavirus. J Antimicrob Chemother 2003; 52: 1049-1050
  • 22 Levine M, Conry-Cantilena C, Wang Y. et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S A 1996; 93: 3704-3709
  • 23 Levine M, Wang Y, Padayatty SJ. et al. A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci U S A 2001; 98: 9842-9846
  • 24 Wang Y, Lin H, Lin BW. et al. Effects of different ascorbic acid doses on the mortality of critically ill patients: a meta-analysis. Ann Intensive Care 2019; 9: 58
  • 25 Fowler AA, Truwit JD, Hite RD. et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI randomized clinical trial. JAMA 2019; 322: 1261-1270
  • 26 Hemilä H, Chalker E. Vitamin C may reduce the duration of mechanical ventilation in critically ill patients: a meta-regression analysis. J Intensive Care 2020; 8: 15
  • 27 ZhiYong Peng. Vitamin C infusion for the treatment of severe 2019-nCoV infected pneumonia: a prospective randomized clinical trial. ClinicalTrials.gov. 2020 ID: NCT04264533
  • 28 Shanghai Clinical Treatment Expert Group for corona virus disease 2019. Expert consensus statement from Shanghai. Chin J Infect Dis 2020; 38. doi: 10.3760/cma.j.issn.1000-6680.2020.0016. Direct translation of Shanghai management guideline for Covid-19: https://www. sepsis-en-daarna.nl/wp-content/uploads/2020/04/Shanghai-Management- Guideline-for-COVID-1.pdf
  • 29 Arabi YM, Fowler R, Hayden FG. Critical care management of adults with community-acquired severe respiratory viral infection. Intensive Care Med 2020; 46: 315-328
  • 30 Jones GD, Droz B, Greve P. et al. Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci U S A 2017; 114: 2848-2853
  • 31 Yamashita Y, Yamashita M. Identification of a novel selenium containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J Biol Chem 2010; 285: 18134-18138
  • 32 Seko T, Yamamura S, Ishihara K. et al. Inhibition of angiotensin-converting enzyme by selenoneine. Fisheries Science 2019; 85: 731-736
  • 33 Guillin OM, Vindry C, Ohlmann T. et al. Selenium, selenoproteins and viral infection. Nutrients 2019; 11: 2101
  • 34 Steinbrenner H. et al. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr 2015; 6: 73-82
  • 35 Nelson HK. et al. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J 2001; 15: 1846-1848
  • 36 Zhang J, Li G, Liu X. et al. Influenza A virus M1 blocks the classical complement pathway through interacting with C1qA. J Gen Virol 2009; 90 (Pt 11): 2751-2758
  • 37 Rayman MP. Selenium and human health. Lancet 2012; 379: 1256-1268
  • 38 Classen HG, Gröber U, Kisters K. Zink – Das unterschätzte Element. Med Monatsschr Pharm 2020; 43: 149-158
  • 39 Read SA, Obeid S. et al. The role of zinc in antiviral immunity. Adv Nutr 2019; 10: 696-710
  • 40 te Velthuis AJW, van den Worm SHE, Sims AC. et al. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 2010; 6: e1001176
  • 41 Hemilä H, Haukka J, Alho M. et al. Zinc acetate lozenges for the treatment of the common cold: a randomised controlled trial. BMJ Open 2020; 10: e031662
  • 42 Gröber U, Kisters K. Corona, Influenza & Co – Wie stärke ich mein Immunsystem mit Mikronährstoffen. Stuttgart: Wissenschaftl. Verlagsges; 2020
  • 43 Hemilä H, Chalker E. The effectiveness of high dose zinc acetate lozenges on various common cold symptoms: a meta-analysis. BMC Fam Pract 2015; 16: 24