Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48(03): 183-190
DOI: 10.1055/a-1162-0126
Übersichtsartikel

Neuer Blick auf ein altes Element – Eisen, Hepcidin und Entzündung

New insights on a long-known element – iron, hepcidin and inflammation
Esther Humann-Ziehank

Zusammenfassung

Eisen (Fe) ist ein essenzielles Spurenelement und nimmt in der tierärztlichen Praxis insbesondere durch seine Bedeutung bei der Eisenmangelanämie einen wichtigen Platz ein. Die Fe-Bereitstellung, z. B. für die Hämoglobinsynthese, stellt hohe Anforderungen an die Eisenhomöostase. Mit der Charakterisierung des Hepcidins als regulatives Protein des Eisenstoffwechsels wurde deutlich, dass Fe einer hormonähnlichen Regulation unterliegt. In der Leber gebildetes Hepcidin reguliert den membranständigen Fe-Transporter Ferroportin. Ein Anstieg der Hepcidinkonzentration führt zu einer Reduzierung der Abgabe von intrazellulär gespeichertem Fe in den Extrazellulärraum. Diese Internalisierung von Fe erfolgt vor allem im retikuloendothelialen System und in Monozyten/Makrophagen, aber auch die enterale Fe-Absorption wird durch Hepcidin vermindert. Auslöser für die hepatische Hepcidinsynthese sind nach derzeitiger Sicht einerseits hohe Fe- bzw. Transferrinkonzentrationen im Plasma. Aber auch Entzündungsmediatoren wie Zytokine führen zur gesteigerten Hepcidinsynthese. Hiermit wurde ein Erklärungsansatz für die oft beobachtete deutliche Abnahme der Fe-Konzentration im Plasma im Rahmen akuter Entzündungen entwickelt, der Mechanismus wird als sog. Zytokin-Hepcidin-Link bezeichnet. Da viele pathogene Mikroorganismen Fe für ihren eigenen Stoffwechsel benötigen, wird die über Hepcidin vermittelte Modulation der Fe-Verfügbarkeit mit Internalisierung von Fe in den Intrazellulärraum der unspezifischen Abwehr zugeordnet. Fe-Supplementationen durch den Tierarzt oder den Landwirt greifen in diese Regulation ein, doch gibt es bisher nur wenige Studien zu den klinischen und metabolischen Auswirkungen oraler oder parenteraler Fe-Supplementierung unter Einbeziehung des Hepcidins. Diese sollte zukünftig wissenschaftlich detaillierter beschrieben werden. Möglicherweise resultiert daraus eine Neubewertung der verschiedenen Formen der Fe-Gabe an Wiederkäuer, Schweine und/oder Pferde.

Abstract

Iron (Fe) is an essential trace element. In daily veterinary practice, it plays a pivotal role e. g. due to its role in Fe deficiency anaemia. The bioavailability of Fe, for example for heme and hemoglobin synthesis, sets high demands on Fe homeostasis. The discovery of hepcidin as being an important regulative protein made a hormone-like regulation of the Fe metabolism evident. Hepcidin is synthesized by the liver and regulates the trans-membranous Fe-transporter ferroportin. An increase of hepcidin leads to a decrease of Fe export from the cell into the extracellular space, the consequence being an internalisation of Fe in the reticuloendothelial system as well as in mononuclear cells. Additionally, enteral Fe uptake decreases. The induction of hepatic hepcidin synthesis seems to be caused by high Fe- and transferrin concentrations in plasma. In addition to this, an increase of cytokines during inflammation similarly triggers hepatic hepcidin synthesis. This finding offers an explanation for the frequently observed decrease of Fe in serum/plasma during acute inflammation, the mechanism thus being termed as cytokine-hepcidin-link. Based on the fact that numerous pathogens require Fe for their own metabolism, internalisation of Fe into the intracellular compartment during inflammation has hence been categorised as being a part of the innate immunity. Iron supplementation, initiated by the veterinarian or the farmer, interferes with this regulation. Currently however, there is a lack of knowledge regarding the clinical and metabolic impacts of parenteral or oral Fe supplementation to farm animals. Therefore, the acquisition of added scientific data via prospective studies is warranted. In consequence, novel findings may lead to a reassessment of Fe supplementation strategies for ruminants, pigs and/or horses.



Publikationsverlauf

Eingereicht: 12. Februar 2020
Eingereicht: 08. April 2020

Artikel online veröffentlicht:
18. Juni 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Michalke B, Schümann K, Windisch WM. Doppelfokus: Speziesanalytik und Januskopf Eisen. In: Becker C, Michalke B, Schümann K. et al. Hrsg. 27. Jahrestagung der Gesellschaft für Mineralstoffe und Spurenelemente eV. Freising: Herbert Utz Verlag; 2012: III
  • 2 Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 2001; 131: 568S-580S
  • 3 Thomas L. Eisenstoffwechsel. In: Thomas L. Hrsg. Labor & Diagnose. Frankfurt/Main: TH-Books Verlagsgesellschaft mbH; 2010: 381
  • 4 Kohgo Y, Ikuta K, Ohtake T. et al. Body iron metabolism and pathophysiology of iron overload. Int J Hematol 2008; 88: 7-15 DOI: 10.1007/s12185–008–0120–5.
  • 5 Kamphues J, Coenen M, Iben C. et al. Spurenelemente. In: Supplemente zu Vorlesungen und Übungen in der Tierernährung. Hannover: Schaper; 2009: 167
  • 6 EU-Kommission. Durchführungsverordnung (EU) 2017/2330 der Kommission vom 14. Dezember 2017 zur Zulassung von Eisen(II)-carbonat, Eisen(III)-chlorid-Hexahydrat, Eisen(II)-sulfat-Monohydrat, Eisen(II)-sulfat-Heptahydrat, Eisen(II)-fumarat, Eisen(II)-Aminosäurechelat-Hydrat, Eisen(II)-Protein- Hydrolysatchelat und Eisen(II)-Glycinchelat-Hydrat als Zusatzstoffe in Futtermitteln für alle Tierarten sowie von Eisendextran als Zusatzstoffe in Futtermitteln für Ferkel und zur Änderung der Verordnungen (EG) Nr. 1334/2003 und (EG) Nr. 479/2006. In. Amtsblatt der Europäischen Union: EU-Kommission; 2017. https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:​02017R233020190228&qid=1585651455784&from=DE Stand: 29.03.2020
  • 7 EFSA. Safety and efficacy of iron compounds (E1) as feed additives for all animal species: ferrous carbonate; ferric chloride, hexahydrate; ferrous fumarate; ferrous sulphate, heptahydrate; ferrous sulphate, monohydrate; ferrous chelate of amino acids, hydrate; ferrous chelate of glycine, hydrate, based on a dossier submitted by FEFANA asbl. EFSA Journal 2016; 14: 4396 DOI: 10.2903/j.efsa.2016.4396.
  • 8 Liu Y, Ma YL, Zhao JM. et al. Digestibility and retention of zinc, copper, manganese, iron, calcium, and phosphorus in pigs fed diets containing inorganic or organic minerals. J Anim Sci 2014; 92: 3407-3415 DOI: 10.2527/jas.2013–7080.
  • 9 Resch R, Gasteiner J, Stögmüller G. et al. Auswirkungen von erdiger Futterverschmutzung. Landwirt 2014; 18: 20-25
  • 10 Steinhöfel O. Vor- und Nachteile der TMR-Fütterung von Milchkühen. Milchpraxis 2016; 2: 15-19
  • 11 Suttle NF. Iron. In: Suttle NF. ed. Mineral Nutrition of Livestock. 4th ed.. Oxfordshire/Cambridge: Cabi; 2010
  • 12 LUFA Nord-West. Grassilageauswertung 2018. https://www.lufa-nord-west.de/index.cfm/action/downloadcenter.html Stand: 12.02.2020
  • 13 LUFA Nord-West. Maissilageauswertung 2018. https://www.lufa-nord-west.de/index.cfm/action/downloadcenter.html Stand: 12.02.2020
  • 14 Staufenbiel R. Eisenmangel. In: Dirksen G. Hrsg. Innere Medizin und Chirurgie des Rindes. Stuttgart: Thieme; 2006: 227
  • 15 Kamphues J, Böhm R, Flachowsky G. et al. Empfehlungen zur Beurteilung der hygienischen Qualität von Tränkwasser für Lebensmittel liefernde Tiere unter Berücksichtigung der gegebenen rechtlichen Rahmenbedingungen. Landbauforschung Völkenrode 2007; 57: 255-272
  • 16 Genther ON, Beede DK. Preference and drinking behavior of lactating dairy cows offered water with different concentrations, valences, and sources of iron. J Dairy Sci 2013; 96: 1164-1176
  • 17 Steinhöfel O, Fröhlich B, Zentek J. et al. Spurenelementversorgung von Milchrindern. Schriftenreihe des Sächsischen Landesamts für Umwelt, Landwirtschaft und Geologie (LfULG) 2013; 14: 23
  • 18 Sheftel AD, Mason AB, Ponka P. The long history of iron in the universe and in health and disease. Biochim Biophys Acta 2012; 1820: 161-187
  • 19 Pigeon C, Ilyin G, Courselaud B. et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 2001; 276: 7811-7819
  • 20 Park CH, Valore EV, Waring AJ. et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001; 276: 7806-7810
  • 21 Oliveira Filho JP, Badial PR, Cunha PH. et al. Cloning, sequencing and expression analysis of the equine hepcidin gene by real-time PCR. Vet Immunol Immunopathol 2010; 135: 34-42
  • 22 Badial PR, Oliveira-Filho JP, Cunha PH. et al. Influence of experimental inflammatory response on hepatic hepcidin gene expression and plasma iron concentration in sheep. Vet Immunol Immunopathol 2011; 141: 157-161
  • 23 Hansen SL, Ashwell MS, Moeser AJ. et al. High dietary iron reduces transporters involved in iron and manganese metabolism and increases intestinal permeability in calves. J Dairy Sci 2009; 93: 656-665
  • 24 Sang Y, Ramanathan B, Minton JE. et al. Porcine liver-expressed antimicrobial peptides, hepcidin and LEAP-2: cloning and induction by bacterial infection. Dev Comp Immunol 2006; 30: 357-366
  • 25 Schwarz P, Strnad P, Singer N. et al. Identification, sequencing, and cellular localization of hepcidin in guinea pig (Cavia porcellus). J Endocrinol 2009; 202: 389-396
  • 26 Hentze MW, Muckenthaler M, Galy B. et al. Two to Tango: Regulation of mammalian iron metabolism. Cell 2010; 142: 24-38 DOI: 10.1016/j.cell.2010.06.028.
  • 27 Franchini M, Montagnana M, Lippi G. Hepcidin and iron metabolism: From laboratory to clinical implications. Clin Chim Acta 2010; 411: 1565-1569
  • 28 Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta 2012; 1823: 1434-1443 doi:10.1016/j.bbamcr.2012.01.014
  • 29 Peslova G, Petrak J, Kuzelova K. et al. Hepcidin, the hormone of iron metabolism, is bound specifically to alpha-2-macroglobulin in blood. Blood 2009; 113: 6225-6236
  • 30 Nemeth E, Tuttle MS, Powelson J. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-2093
  • 31 Ramos E, Kautz L, Rodriguez R. et al. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice. Hepatology 2011; 53: 1333-1341
  • 32 Nemeth E, Ganz T. The role of hepcidin in iron metabolism. Acta Haematol 2009; 122: 78-86
  • 33 Starzynski RR, Laarakkers CM, Tjalsma H. et al. Iron supplementation in suckling piglets: how to correct iron deficiency anemia without affecting plasma hepcidin levels. PLoS One 2013; 8 DOI: 10.1371/​journal.pone.0064022.
  • 34 Nemeth E, Rivera S, Gabayan V. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004; 113: 1271-1276
  • 35 Andrews NC. Anemia of inflammation: the cytokine-hepcidin link. J Clin Invest 2004; 113: 1251-1253
  • 36 Ganz T, Nemeth E. Iron sequestration and anemia of inflammation. Semin Hematol 2009; 46: 387-393
  • 37 Humann-Ziehank E, Menzel A, Roehrig P. et al. Acute and subacute response of iron, zinc, copper and selenium in pigs experimentally infected with Actinobacillus pleuropneumoniae. Metallomics 2014; 6: 1869-1879 DOI: 10.1039/c4mt00148f.
  • 38 Leifsson PS, Iburg T, Jensen HE. et al. Intravenous inoculation of Staphylococcus aureus in pigs induces severe sepsis as indicated by increased hypercoagulability and hepatic dysfunction. FEMS Microbiol Lett 2010; 309: 208-216 DOI: 10.1111/j.1574–6968.2010.02042.x.
  • 39 Kaiser M, Jacobson M, Andersen PH. et al. Inflammatory markers before and after farrowing in healthy sows and in sows affected with postpartum dysgalactia syndrome. BMC Vet Res 2018; 14: 83 DOI: 10.1186/s12917–018–1382–7.
  • 40 Jacobsen S, Toelboell T, Andersen PH. Dose dependency and individual variability in selected clinical, haematological and blood biochemical responses after systemic lipopolysaccharide challenge in cattle. Vet Res 2005; 36: 167-178 DOI: 10.1051/vetres:2004062.
  • 41 Santana AM, Silva DG, Thomas FC. et al. Blood serum acute phase proteins and iron dynamics during acute phase response of Salmonella enterica serotype Dublin experimentally infected buffalo calves. Vet Immunol Immunopathol 2018; 203: 30-39 DOI: 10.1016/j.vetimm.2018.07.014.
  • 42 Erkilic EE, Erdogan HM, Ogun M. et al. Relationship between hepcidin and oxidant/antioxidant status in calves with suspected neonatal septicemia. Vet World 2016; 9: 1238-1241 DOI: 10.14202/vetworld.​2016.1238–1241.
  • 43 Baydar E, Dabak M. Serum iron as an indicator of acute inflammation in cattle. J Dairy Sci 2014; 97: 222-228 DOI: 10.3168/jds.2013–6939.
  • 44 Tsukano K, Shimamori T, Fukuda T. et al. Serum iron concentration as a marker of inflammation in young cows that underwent dehorning operation. J Vet Med Sci 2019; 81: 626-628 DOI: 10.1292/jvms.19–0002.
  • 45 Weber J, Zenker M, Köller G. et al. Clinical chemistry investigations in recumbent and healthy german holstein cows after the fifth day in milk. J Vet Res 2019; 63: 383-390 DOI: 10.2478/jvetres-2019–0038.
  • 46 Borges AS, Divers TJ, Stokol T. et al. Serum iron and plasma fibrinogen concentrations as indicators of systemic inflammatory diseases in horses. J Vet Intern Med 2007; 21: 489-494
  • 47 Andreassen SM, Vinther AML, Nielsen SS. et al. Changes in concentrations of haemostatic and inflammatory biomarkers in synovial fluid after intra-articular injection of lipopolysaccharide in horses. BMC Vet Res 2017; 13: 182 DOI: 10.1186/s12917–017–1089–1.
  • 48 Ellermann M, Arthur JC. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med 2017; 105: 68-78 DOI: 10.1016/j.freeradbiomed.2016.10.489.
  • 49 Begg SL. The role of metal ions in the virulence and viability of bacterial pathogens. Biochem Soc Trans 2019; 47: 77-87 DOI: 10.1042/bst20180275.
  • 50 Bosse JT, Janson H, Sheehan BJ. et al. Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes Infect 2002; 4: 225-235
  • 51 Wang J, Moolji J, Dufort A. et al. Iron acquisition in mycobacterium avium subsp. paratuberculosis. J Bacteriol 2015; 198: 857-866 DOI: 10.1128/JB.00922–15.
  • 52 Kortman GA, Boleij A, Swinkels DW. et al. Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface. PLoS One 2012; 7: e29968 DOI: 10.1371/journal.pone.0029968.
  • 53 Palyada K, Threadgill D, Stintzi A. Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 2004; 186: 4714-4729 DOI: 10.1128/jb.186.14.4714–4729.2004.
  • 54 Flo TH, Smith KD, Sato S. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004; 432: 917-921
  • 55 Armitage AE, Eddowes LA, Gileadi U. et al. Hepcidin regulation by innate immune and infectious stimuli. Blood 2011; 118: 4129-4139 DOI: 10.1182/blood-2011–04–351957.
  • 56 Nairz M, Dichtl S, Schroll A. et al. Iron and innate antimicrobial immunity – Depriving the pathogen, defending the host. J Trace Elem Med Biol 2018; 48: 118-133 DOI: 10.1016/j.jtemb.2018.03.007.
  • 57 Sun CC, Vaja V, Babitt JL. et al. Targeting the hepcidin-ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation. Am J Hematol 2012; 87: 392-400 DOI: 10.1002/ajh.23110.
  • 58 Sazawal S, Black RE, Ramsan M. et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 2006; 367: 133-143
  • 59 Werner T, Wagner SJ, Martinez I. et al. Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut 2011; 60: 325-333 DOI: 10.1136/gut.2010.216929.
  • 60 Ellermann M, Gharaibeh RZ, Maharshak N. et al. Dietary iron variably modulates assembly of the intestinal microbiota in colitis-resistant and colitis-susceptible mice. Gut Microbes 2019; 1-19 DOI: 10.1080/19490976.2019.1599794.
  • 61 Lee T, Clavel T, Smirnov K. et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut 2017; 66 (05) 863-887 DOI: 10.1136/gutjnl-​2015–309940.
  • 62 Paganini D, Zimmermann MB. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: a review. Am J Clin Nutr 2017; 106: 1688s-1693s DOI: 10.3945/ajcn.117.156067.