CC BY-NC-ND 4.0 · Planta Medica International Open 2020; 07(02): e68-e72
DOI: 10.1055/a-1156-4229
Original Papers

Antioxidant, Cytotoxic, and Acetylcholinesterase Inhibitory Activities of Withanolides from Datura quercifolia

Christian Jasso
1   Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México
,
Antonio Nieto-Camacho
1   Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México
,
MaríaTeresa Ramírez-Apan
1   Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México
,
Mahinda Martínez
2   Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
,
Emma Maldonado
1   Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México
› Author Affiliations

Abstract

Five withanolides identified as daturalactone (1) , withanicandrin (2), withanolide B (3), nicandrin B (4), and daturalactone 2 (5) were isolated from the aerial parts (flowers, leaves, and stems) of Datura quercifolia Kunth. Their structures were determined by analysis of the IR, MS, 1D and 2D NMR spectra. All the isolates were evaluated for their cytotoxic and antioxidant activities, as well as for their capacity to inhibit the activity of the acetylcholinesterase enzyme (AChE). As result, the five withanolides showed weak cytotoxic and pro-oxidant activities, however, they displayed a relevant inhibitory activity against AChE, as indicated by the IC50 values ranging from 1.51 to 12.11 µM. The differences in AChE inhibition seem to be related to the functional group at C-12.

Supporting Information



Publication History

Received: 26 November 2019
Received: 21 February 2020

Accepted: 03 April 2020

Article published online:
07 May 2020

© 2020. Thieme. All rights reserved.

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Luna-Cavazos M, Bye R. Phytogeographic analysis of the genus Datura (Solanaceae) in continental Mexico. Rev Mex Biodivers 2011; 82: 977-988
  • 2 El Bazaoui A, Bellimam MA, Soulaymani A. Nine new tropane alkaloids from Datura stramonium L. identified by GC/MS. Fitoterapia 2011; 82: 193-197
  • 3 Lesiak AD, Cody RB, Dane AJ, Musah RA. Plant seed species identification from chemical fingerprints: A high-throughput application of direct analysis in real time mass spectrometry. Anal Chem 2015; 87: 8748-8757
  • 4 Benítez G, March-Salas M, Villa-Kamel A, Cháves-Jiménez U, Hernández J, Montes-Osuna N, Moreno-Chocano J, Cariñanos P. The genus Datura L. (Solanaceae) in Mexico and Spain – Ethnobotanical perspective at the interface of medical and illicit uses. J Ethnopharmacol 2018; 219: 133-151
  • 5 Maheshwari NO, Khan A, Chopade BA. Rediscovering the medicinal properties of Datura sp.: A review. J Med Plants Res 2013; 7: 2885-2897
  • 6 Argueta Villamar A. Atlas de las plantas de la medicina tradicional Mexicana. Vol. 3 Cd Mx: Instituto Nacional Indigenista 1994; 1344-1349
  • 7 Aguilar A, Camacho JR, Chino S, Jácquez P, López ME. Herbario Medicinal del Instituto Mexicano del Seguro Social. Cd Mx: IMSS. 1994 65.
  • 8 Chen LX, He H, Qiu F. Natural withanolides: An overview. Nat Prod Rep 2011; 28: 705-740
  • 9 Zhang WN, Tong WY. Chemical constituents and biological activities of plants from the genus Physalis. Chem Biodivers 2016; 13: 48-65
  • 10 Veleiro AS, Cirigliano AM, Oberti JC, Burton G. 7-Hydroxywithanolides from Datura ferox. J Nat Prod 1999; 62: 1010-1012
  • 11 Evans WC, Grout RJ, Mensah MLK. Withanolides from Datura spp and hybrids. Phytochemistry 1984; 23: 1717-1720
  • 12 Cirigliano AM, Veleiro AS, Oberti JC, Burton G. A 15β-hydroxywithanolide from Datura ferox. Phytochemistry 1995; 40: 611-613
  • 13 Tursunova RN, Maslennikova VA, Abubakirov NK. Withanolides from Datura stramonium. II. Withastramonolide. Chem Nat Comp 1978; 4: 73-75
  • 14 Dhar KL, Raina ML. A novel withanolide from Datura quercifolia. Phytochemistry 1973; 12: 476-478
  • 15 Kalla AK, Raina ML, Dhar KL, Qurishi MA, Snatzke G. Revised structures of daturalactone and 12-oxowithanolide. Phytochemistry 1979; 18: 637-640
  • 16 Bandhoria P, Gupta VK, Sharma VK, Satti NK, Dutt P, Suri KA. Crystal structure of 6α,7α:24α,25α-diepoxy-5α,12α-dihydroxy-1-oxo-20S,22R-with a-2-enolide isolated from Datura quercifolia leaves. Anal Sci 2006; 22: x169-x170
  • 17 Qurishi MA, Dhar KL, Atal CK. A novel withanolide from Datura quercifolia. Phytochemistry 1979; 18: 283-284
  • 18 Kirson I, Lavie D, Subramanian SS, Sethi PD, Glotter E. Withanicandrin, a ring-C-substituted withanolide from Nicandra physaloides (Solanaceae). J Chem Soc, Perkin I 1972; 2109-2111
  • 19 Bagchi A, Neogi P, Sahai M, Ray AB, Oshima Y, Hikino H. Withaperuvin E and nicandrin B, withanolides from Physalis peruviana and Nicandra physaloides. Phytochemistry 1984; 23: 853-855
  • 20 Hansel R, Huang JT, Rosenberg D. Zwei withanolide aus Lycium chinense. Arch Pharm 1975; 308: 653-654
  • 21 Zhang H, Hagan K, Patel O, Tong X, Day VW, Timmermann B. 6α,7α-Epoxy-5α-hydroxy-1-oxo-22R-witha-2,24-dienolide (withanolide B), 5β,6β-epoxy-4β,20-dihydroxy-1-oxo-22R-witha-2,24-dienolide (withanolide D), and 4β,27-dihydroxy-1-oxo-22R-witha-2,5,24-trienolide (5,6-deoxywithaferin A) in roots of Withania somnifera: Isolation and their crystal structures. J Chem Crystallogr 2014; 44: 169-176
  • 22 Bagchi A, Sahai M, Ray AB. C28-Steroidal lactones of the seeds of Nicandra physaloides. J Ind Chem Soc 1984; 61: 173-174
  • 23 Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005; 53: 1841-1856
  • 24 Padierna G, Pérez-Castorena AL, Martínez M, Nieto-Camacho A, Morales-Jiménez J, Maldonado E. Evaluation of the antibacterial, antioxidant and α-glucosidase inhibitory activities of withanolides from Physalis gracilis. Planta Med Int Open 2017; 4: e1-e4
  • 25 Cavin A, Hostettmann K, Dyatmyko W, Potterat O. Antioxidant and lipophilic constituents of Tinospora crispa. Planta Med 1998; 64: 393-396
  • 26 Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351-358
  • 27 Kessler M, Ubeaud G, Jung L. Anti- and pro-oxidant activity of rutin and quercetin derivatives. J Pharm Pharmacol 2003; 55: 131-142
  • 28 Damu AG, Quo PC, Su CR, Kuo TH, Chen TH, Bastow KF, Lee KH, Wu TS. Isolation, structures, and structure-cytotoxic activity relationship of withanolides and physalins from Physalis angulata. J Nat Prod 2007; 74: 1146-1152
  • 29 Neogi P, Kawai M, Butsugan Y, Mori Y, Suzuki M. Withacoagin, a new withanolide from Withania coagulans roots. Bull Chem Soc Jpn 1988; 61: 4479-4481
  • 30 Maldonado E, Pérez-Castorena AL, Garcés C, Martínez M. Philadelphicalactones C and D and other cytotoxic constituents from Physalis philadelphica. Steroids 2011; 76: 724-728
  • 31 Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2017; 35: 178-216
  • 32 Riaz N, Malik A, Aziz-ur-Rehman. Nawaz SA, Muhammad P, Choudary MI. Cholinesterase-inhibiting withanolides from Ajuga bracteosa. Chem Biodivers 2004; 1: 1289-1295
  • 33 Choudary MI, Yousuf S, Nawaz SA, Ahmed S. Atta-ur-Rahman Cholinesterase-inhibiting withanolides from Withania somnifera. Chem Pharm Bull 2004; 52: 1358-1361
  • 34 Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88-95
  • 35 Torres F, Pérez-Castorena AL, Arredondo L, Toscano RA, Nieto-Camacho A, Martínez M, Maldonado E. Labdanes, withanolides and other constituents of Physalis nicandroides. J Nat Prod 2019; 82: 2489-2500