CC BY-NC-ND 4.0 · Planta Medica International Open 2020; 07(02): e81-e87
DOI: 10.1055/a-1155-6613
Original Papers

Quantification of Cannabinoids in Cannabis Oil Using GC/MS: Method Development, Validation, and Application to Commercially Available Preparations in Argentina

Nicolás Fernández
1   Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Cátedra de Toxicología y Química Legal, Laboratorio de asesoramiento toxicológico analítico (CENATOXA), Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
,
Laura Jorgelina Carreras
1   Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Cátedra de Toxicología y Química Legal, Laboratorio de asesoramiento toxicológico analítico (CENATOXA), Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
,
Rafael Antonio Larcher
1   Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Cátedra de Toxicología y Química Legal, Laboratorio de asesoramiento toxicológico analítico (CENATOXA), Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
,
Adriana Silvia Ridolfi
1   Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Cátedra de Toxicología y Química Legal, Laboratorio de asesoramiento toxicológico analítico (CENATOXA), Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
,
1   Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Cátedra de Toxicología y Química Legal, Laboratorio de asesoramiento toxicológico analítico (CENATOXA), Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
› Author Affiliations

Abstract

The medicinal use of cannabis oil is increasing all over the world. Few analytical methods for the quantification of cannabinoids have been validated using internationally accredited guidelines. This work describes the development and validation of a selective and sensitive gas chromatography-mass spectrometry method for the qualitative analysis of the main cannabinoids, namely cannabidiolic acid, tetrahydrocannabinolic acid, cannabigerol, and cannabichromene as well as quantitative determination of cannabidiol, Δ9-tetrahydrocannabinol, and cannabinol, present in cannabis oils. The method was fully validated according to Food and Drug Administration and International Conference on Harmonization guidelines. A linear range of 0.1–30 μg/mL was obtained for CBD and Δ9-THC and 0.034–11.7 μg/mL for CBN, presenting determination coefficients above 0.99. The lower limits of quantification ranged from 0.034 to 0.1 μg/mL. The intra- and inter-day precision, calculated in terms of relative standard deviation, were 3.9–13.8 and 4.7–14.1%, respectively. Extraction efficiency at lower limits of quantification was 95–103%. Verification of method validity was performed with authentic cannabis oil samples. To our knowledge, this is the first method available in Argentina, validated according to international guidelines, for quantification of CBD, Δ9-THC, and CBN in cannabis oil. The primary application of this method is to differentiate between cannabis oils with high or low content of Δ9-THC, CBD, or mixed Δ9-THC/CBD. This is of fundamental importance for the patient and so that the physicians can carry out a suitable therapy.



Publication History

Received: 19 December 2019
Received: 11 March 2020

Accepted: 05 April 2020

Article published online:
28 May 2020

© 2020. Thieme. All rights reserved.

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Gonçalves J, Rosado T, Soares S, Simão AY, Caramelo D, Luís Â, Fernández N, Barroso M, Gallardo E, Duarte AP. Cannabis and its secondary metabolites: their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines 2019; 6: 31
  • 2 Garb S. Cannabinoids in the management of severe nausea and vomiting from cancer chemotherapy. Some additional considerations. J Clin Pharmacol 1981; 21: 57S-59S
  • 3 Lewis DY, Brett RR. Activity-based anorexia in C57/BL6 mice: Effects of the phytocannabinoid, 9-tetrahydrocannabinol (THC), and the anandamide analog, OMDM-2. Eur Neuropsychopharmacol 2010; 20: 622-631
  • 4 De Lago E, Gomez-Ruiz M, Moreno-Martet M, Fernandez-Ruiz J. Cannabinoids, multiple sclerosis, and neuroprotection. Exp Rev Clin Pharmacol 2009; 2: 645-660
  • 5 Maurer M, Henn V, Dittrich A, Hofmann A. 9-tetrahydrocannabinol shows antispastic and analgesic effects in a single case double-blind trial. Eur Arch Psychiatr Clin Neurosci 1990; 240: 1-4
  • 6 Flores-Sanchez IJ, Verpoorte R. Secondary metabolism in cannabis. Phytochem Rev 2008; 7: 615-639
  • 7 Rong C, Lee Y, Carmona NE, Cha DS, Ragguett RM, Rosenblat JD, Mansur RB, Ho RC, McIntyre RS. Cannabidiol in medical marijuana: Research vistas and potential opportunities. Pharmacol Res 2017; 121: 213-218
  • 8 Russo EB. Cannabinoids in the management of difficult to treat pain. Ther Clin Risk Manag 2008; 4: 245-459
  • 9 Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, Keurentjes JC, Lang S, Misso K, Ryder S, Schmidlkofer S, Westwood M, Kleijnen J. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA 2015; 313: 2456-2473
  • 10 Borgelt LM, Franson KL, Nussbaum AM, Wang GS. The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy 2013; 33: 195-209
  • 11 Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, Abate M, Faggiana G, Proto MC, Fiore D, Laezza C, Bifulco M. Cannabidiol: state of the art and new challenges for therapeutic applications. Pharmacol Ther 2017; 175: 133-150
  • 12 Lercker G, Bocci F, Frega N, Bortolomeazzi R. Cannabinoid acids analysis. Farmaco 1992; 47: 367-378
  • 13 Perrotin-Brunel H, Buijs W, van Spronsen J, van Roosmalen MJE, Peters CJ, Verpoorte R, Witkamp GJ. Decarboxylation of Δ9-tetrahydrocannabinol: kinetics and molecular modelling. J Mol Struct 2011; 987: 67-73
  • 14 Politi M, Peschel W, Wilson N, Zloh M, Prieto JM, Heinrich M. Direct NMR analysis of cannabis water extracts and tinctures and semi-quantitative data on Δ9-THC and Δ9-THC-acid. Phytochemistry 2008; 69: 562-570
  • 15 Veress T, Szanto JI, Leisztner L. Determination of cannabinoid acids by high-performance liquid chromatography of their neutral derivatives formed by thermal decarboxylation: I. Study of the decarboxylation process in open reactors. J Chromatogr A 1990; 520: 339-347
  • 16 Hazekamp A, Bastola K, Rashidi H, Bender J, Verpoorte R. Cannabis tea revisited: a systematic evaluation of the cannabinoid composition of cannabis tea. J Ethnopharm 2007; 113: 85-90
  • 17 Fischedick JT, Hazekamp A, Erkelens T, Choi YH, Verpoorte R. Metabolic fingerprinting of cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochem 2010; 71: 2058-2073
  • 18 US Food and Drug Administration (FDA). Warning letters and test results for cannabidiol-related products. Available at https://www.fda.gov/news-events/public-health-focus/warning-letters-and-test-results-cannabidiol-related-products Accessed March 03, 2020.
  • 19 Ley 17818 De estupefacientes. Available at: http://www.anmat.gov.ar/webanmat/Legislacion/Medicamentos/ley17818.pdf; Accessed July 22, 2019.
  • 20 Ley 27350 Investigación médica y científica de uso medicinal de la planta de Cannabis y sus derivados. Available at: http://servicios.infoleg.gob.ar/infolegInternet/anexos/270000-74999/273801/norma.htm Accessed July 22, 2019.
  • 21 Pellegrini M, Marchei E, Pacifici R, Pichini S. A rapid and simple procedure for the determination of cannabinoids in hemp food products by gas chromatography-mass spectrometry. J Pharm Biomed Anal 2005; 36: 939-946
  • 22 Nahar L, Guo M, Sarker SD. Gas chromatographic analysis of naturally occurring cannabinoids: a review of literature published during the past decade. Phytochem Anal 2019; 1-12
  • 23 Ciolino LA, Ranieri TL, Taylor AM. Commercial cannabis consumer products part 1 : GC-MS qualitative analysis of cannabis cannabinoids. Forensic Sci Int 2018; 289: 429-437
  • 24 Citti C, Braghiroli D, Vandelli MA, Cannazza G. Pharmaceutical and biomedical analysis of cannabinoids: a critical review. J Pharm Biomed Anal 2018; 147: 565-579
  • 25 Meng Q, Buchanan B, Zuccolo J, Poulin M, Gabriele J, Baranowski DC. A reliable and validated LC-MS/MS method for the simultaneous quantification of 4 cannabinoids in 40 consumer products. PLoS One 2018; 13: e0196396
  • 26 Pacifici R, Marchei E, Salvatore F, Guandalini L, Busardò FP, Pichini S. Evaluation of long-term stability of cannabinoids in standardized preparations of cannabis flowering tops and cannabis oil by ultra-high-performance liquid chromatography tandem mass spectrometry. Clin Chem Lab Med 2018; 56: e94-e96
  • 27 Davis TWM, Farmilo CG, Osadchuk W. Identification and origin determinations of Cannabis by gas and paper chromatography. Anal Chem 1963; 35: 751-754
  • 28 Fetterman PS, Doorenbos NJ, Keith ES, Quimby MW. A simple gas liquid chromatography procedure for determination of cannabidiolic acids in Cannabis sativa L. Experientia 1971; 27: 988-990
  • 29 Parker JM, Stembal BL. Review of gas-liquid chromatography of marihuana. Journal of the AOAC 1974; 57: 888-892
  • 30 Food and Drug Administration (FDA) Bioanalytical Method Validation. Guidance for Industry. U.S. Department of Health and Human Services, Food and Drug Administration, FDA; 2018
  • 31 International Conference on Harmonization (ICH) Guidance for Industry, Q2B Validation of Analytical Procedures: Methodology. 1996
  • 32 Mudge EM, Murch SJ, Brown PN. Leaner and greener analysis of cannabinoids. Anal Bioanal Chem 2017; 409: 3153-3163
  • 33 Rutha AC, Gryniewicz-Ruzickaa CM, Trehya ML, Kornspanb N, Coodyb G. Consistency of label claims of internet-purchased hemp oil and cannabis products as determined using IMS and LC-MS: A marketplace survey. Journal of Regulatory Science 2016; 03: 1-6
  • 34 Word Anti-Doping Agency (WADA) Minimum criteria for chromatographic-mass spectrometric confirmation of the identity of analytes for doping control purposes. 2015
  • 35 Fernández N, Cabanillas LM, Olivera NM, Quiroga PN. Optimization and validation of simultaneous analyses of ecgonine, cocaine, and 7 metabolites in human urine by gas chromatography-mass spectrometry using a one-step solid-phase extraction. Drug Test Anal 2019; 11: 361-373
  • 36 Citti C, Pacchetti B, Vandelli MA, Forni F, Cannazza G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J Pharm Biomed Anal 2018; 49: 532-540
  • 37 Bettiol A, Lombardi N, Crescioli G, Maggini V, Gallo E, Mugelli A, Firenzuoli F, Baronti R, Vannacci A. Galenic preparations of therapeutic cannabis sativa differ in cannabinoids concentration: A quantitative analysis of variability and possible clinical implications. Front Pharmacol 2019; 9: 1543
  • 38 Deiddaa R, Avohou HT, Baronti R, Davolioc PL, Pasquini B, Del Bubba M, Huberta C, Huberta P, Orlandinid S, Furlanetto S. Analytical quality by design: Development and control strategy for a LC method to evaluate the cannabinoids content in cannabis olive oil extracts. J Pharm Biomed Anal 2019; 166: 326-335
  • 39 Crippa JA, Crippa AC, Hallak JE, Martín-Santos R, Zuardi AW. Δ 9-THC Intoxication by cannabidiol-enriched cannabis extract in two children with refractory epilepsy: Full remission after switching to purified cannabidiol. Front Pharmacol 2016; 7: 359
  • 40 Ross SA. ElSohly MACBN and D9-THC concentration ratio as an indicator of the age of stored marijuana samples. Bull Narc. 1997; 49: 139-147
  • 41 Bonn-Miller MO, Loflin MJ, Thomas BF, Marcu JP, Hyke T, Vandrey R. Labeling accuracy of cannabidiol extracts sold online. JAMA 2017; 318: 1708-1709
  • 42 Pavlovic R, Nenna G, Calvi L, Panseri S, Borgonovo G, Giupponi L, Cannazza G, Giorgi A. Quality traits of “cannabidiol oils”: Cannabinoids content, terpene fingerprint and oxidation stability of European commercially available preparations. Molecules 2018; 23: 1230