Fortschr Neurol Psychiatr 2020; 88(09): 620-633
DOI: 10.1055/a-1149-9308
Fort- und Weiterbildung

Grundlagen und Stellenwert der COMT- und MAO-B-Inhibitoren in der Therapie des idiopathischen Parkinson-Syndroms

The role of inhibitors of COMT and MAO-B in the therapy of Parkinson’s disease
Dirk Woitalla
,
Rejko Krüger
,
Stefan Lorenzl
,
Thomas Müller
,
Guenther Oelwein
,
Alexander Storch
,
Martin Wolz
,
Ullrich Wüllner

COMT- und MAO-B-Hemmer gehören neben den Dopamin-Agonisten und Levodopa zu den etablierten Pharmaka zur Behandlung des idiopathischen Parkinson-Syndroms (IPS). Die MAO-B-Hemmer Selegilin und Rasagilin entfalten auch in der Monotherapie einen symptomatischen Therapieeffekt, während Safinamid und COMT-Hemmer nur zur Kombinationstherapie mit Levodopa zugelassen sind. Beide Substanzklassen verlängern die Wirkdauer von Levodopa und optimieren die Wirkung der Therapie. Klinisch messbar resultiert eine Verlängerung der ON-Zeit. Der Einsatz von MAO-B-Inhibitoren erfolgte in der Vergangenheit auch unter der Vorstellung einer neuroprotektiven Wirkung. Trotz der aufgrund experimenteller Daten postulierten Wirkung ließ sich dieser Effekt in klinischen Studien bislang nicht zweifelsfrei belegen.

Inhibitors of COMT and MAO-B are well established in the pharmacotherapy of Parkinson’s disease (PD). MAO-B inhibitors are used as monotherapy as well as in combination with levodopa, whereas COMT inhibitors exert their effects only in conjungtion with levodopa. Both classes of compounds prolong the response duration of levodopa and optimise its clinical benefit. As a result, the ON-times are prolonged significantly. In the past, MAO-B inhibitors were also adminstered for neuroprotection; however, despite convincing scientific reasoning in support of neuroprotective effects, these could not be substantiated in clinical studies performed so far.



Publication History

Received: 08 February 2020

Accepted: 28 March 2020

Article published online:
25 June 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Bernheimer H, Birkmayer W, Hornykiewicz O. et al. Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations. J Neurol Sci 1973; 20 (04) : 415-455
  • 2 Birkmayer W, Hornykiewicz O. Der L-Dioxyphenylalanin (=L-DOPA)-Effekt beim Parkinson-Syndrom des Menschen: Zur Pathogenese und Behandlung der Parkinson-Akinese. Arch Für Psychiatr Und Nervenkrankheiten Ver Mit Zeitschrift Für Die Gesamte Neurol Und Psychiatr 1962; 203: 560-574
  • 3 Olanow CW. Levodopa: Effect on cell death and the natural history of Parkinson’s disease. Mov Disord 2015; 30: 37-44
  • 4 Merims D, Giladi N. Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson’s disease. Park Relat Disord 2008; 14: 273-280
  • 5 Sharma JC, Ross IN, Rascol O. et al. Relationship between weight, levodopa and dyskinesia: the significance of levodopa dose per kilogram body weight. Eur J Neurol 2008; 15: 493-496
  • 6 Kelly MJ, Lawton MA, Baig F. et al. Predictors of motor complications in early Parkinson’s disease: a prospective cohort study. Mov Disord 2019; 34: 1174-1183
  • 7 Warren Olanow C, Kieburtz K, Rascol O. et al. Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord 2013; 28: 1064-1071
  • 8 DGN. S3-Leitlinie Idiopathisches Parkinson-Syndrom. . 2016
  • 9 Lesser RP, Fahn S, Snider SR. Analysis of the clinical problems in parkinsonism and of the complications of long-term levodopa therapy. Neurology 1978; 28: 342
  • 10 Das B, Modi G, Dutta A. Dopamine D3 agonists in the treatment of Parkinson’s disease. Curr Top Med Chem 2015; 15: 908-926
  • 11 Horowski R. A history of dopamine agonists. From the physiology and pharmacology of dopamine to therapies for prolactinomas and Parkinson’s disease - A subjective view. J Neural Transm 2007; 114: 127-134
  • 12 Kurlan R. «Levodopa phobia»: A new iatrogenic cause of disability in Parkinson disease. Neurology 2005; 64: 923-924
  • 13 Vlaar A, Hovestadt AD, van Laar T. et al. The treatment of early parkinson’s disease: Levodopa rehabilitated. Pract Neurol 2011; 11: 145-152
  • 14 Soares AR, Marchiosi R, de Cássia Siqueira-soares R. et al. The role of L-DOPA in plants. Plant Signal Behav. 2014 9. (4) e 28275
  • 15 Nutt JG. Pharmacokinetics and pharmacodynamics of levodopa. Mov Disord. 2008 23. Suppl 3; 580–584
  • 16 Nissinen E, Tuominen R, Perhoniemi V. et al. Catechol-O-methyltransferase activity in human and rat small intestine. Life Sci 1988; 42: 2609-2614
  • 17 De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA’s actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2017; 151: 57-100
  • 18 Woitalla D, Karwasz R, Müller T. et al. The activity of Catechol-O-Methyltransferase in parkinsonian patients with ″on-off fluctuations″. J Neural Transm. 2000: 107 (1); 105–111
  • 19 Varma GS, Karadaǧ F, Emin Erdal M. et al. Effects of catechol-O-methyltransferase enzyme Val158Met polymorphism on cognitive functions in schizophrenic patients. Klin Psikofarmakol Bul 2011; 21: 24-32
  • 20 Palmatier MA, Kang AM, Kidd KK. Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol Psychiatry 1999; 46: 557-567
  • 21 Corvol JC, Bonnet C, Charbonnier-Beaupel F. et al. The COMT Val158Met polymorphism affects the response to Entacapon in Parkinson’s disease: A randomized crossover clinical trial. Ann Neurol 2011; 69: 111-118
  • 22 Falcão A, Rocha JF, Santos A. et al. Opicapon pharmacokinetics and pharmacodynamics comparison between healthy Japanese and matched white subjects. Clin Pharmacol Drug Dev 2016; 5: 150-161
  • 23 Burke WJ, Kumar VB, Pandey N. et al. Aggregation of α-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol 2008; 115: 193-203
  • 24 Gerlach M, Xiao AY, Kuhn W. et al. The central catechol-O-methyltransferase inhibitor Tolcapon increases striatal hydroxyl radical production in L-DOPA/carbidopa treated rats. J Neural Transm 2001; 108: 189-204
  • 25 Kuhn W, Woitalla D, Gerlach M. et al. Tolcapon and neurotoxicity in Parkinson’s disease [6]. Lancet 1998; 352: 1313-1314
  • 26 Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 1996; 47
  • 27 Weiner WJ. Levodopa – Toxic or neuroprotective?. Nat Clin Pract Neurol 2006; 2: 518-519
  • 28 LeWitt PA, Dubow J, Singer C. Is levodopa toxic?: insights from a brain bank. Neurology 2011; 77: 1414-1415
  • 29 Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967; 276: 374-379
  • 30 Haasio K. Toxicology and safety of comt inhibitors. Int Rev Neurobiol 2010; 95: 163-189
  • 31 Watkins P. COMT inhibitors and liver toxicity. Neurology. 2000 55. (Suppl. 4) 551–2
  • 32 Müller T, Erdmann C, Muhlack S. et al. Pharmacokinetic behaviour of levodopa and 3-O-methyldopa after repeat administration of levodopa/carbidopa with and without Entacapon in patients with Parkinson’s disease. J Neural Transm 2006; 113: 1441-1448
  • 33 Hauser RA, Molho E, Shale H. et al. A pilot evaluation of the tolerability, safety, and efficacy of Tolcapon alone and in combination with oral selegiline in untreated Parkinson’s disease patients. Mov Disord 1998; 13: 643-647
  • 34 Kinnunen E, Myllylä V, Agid Y. et al. Entacapon to Tolcapon switch: multicenter double-blind, randomized, active-controlled trial in advanced Parkinson’s disease. Mov Disord 2007; 22: 14-19
  • 35 Müller T. Entacapon. Expert Opin Drug Metab Toxicol 2010; 6: 983-993
  • 36 Langston J, Ballard P, Tetrud J. et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science (80-) 1983; 219: 979-980
  • 37 Langston JW, Irwin I, Langston EB. et al. 1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci Lett 1984; 48: 87-92
  • 38 Chiba K, Trevor A, Castagnoli N. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 1984; 120: 574-578
  • 39 Castagnoli N, Chiba K, Trevor AJV. Potential bioactivation pathways for the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci 1985; 36: 225-230
  • 40 Langston JW, Irwin IAN, Langston EB. et al. Pargyline prevents MPTP-induced parkinsonism in primates. Science (80-) 1984; 225: 1480-1482
  • 41 Tetrud JW, Langston JW. The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science (80-) 1989; 245: 519-522
  • 42 Datatop: A multicenter controlled clinical trial in early parkinson’s disease: Parkinson study group. Arch Neurol 1989; 46: 1052-1060
  • 43 Olanow CW, Rascol O, Hauser R. et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med 2009; 361: 1268-1278
  • 44 Pålhagen S, Heinonen E, Hägglund J. et al. Selegiline slows the progression of the symptoms of Parkinson disease. Neurology 2006; 66: 1200-1206
  • 45 Meiser J, Delcambre S, Wegner A. et al. Loss of DJ-impairs antioxidant response by altered glutamine and serine metabolism. Neurobiol Dis 2016; 89: 112-125
  • 46 Burbulla LF, Song P, Mazzulli JR. et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science (80-) 2017; 357: 1255-1261
  • 47 Krebiehl G, Ruckerbauer S, Burbulla LF. et al. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson’s disease-associated protein DJ-1. PLoS One. 2010 5. (2) e 9367
  • 48 Dolgacheva LP, Fedotova EI, Abramov AY. et al. Alpha-synuclein and mitochondrial dysfunction in Parkinson disease. Biol Membr 2017; 34: 4-14
  • 49 Burbulla LF, Fitzgerald JC, Stegen K. et al. Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1. Cell Death Dis. 2014 5. e 1180
  • 50 Richard IH, Kurlan R, Tanner C. et al. Serotonin syndrome and the combined use of deprenyl and an antidepressant in Parkinson’s disease. Neurology 1997; 48: 1070-1077
  • 51 Cattaneo C, Barone P, Bonizzoni E. et al. Effects of safinamide on pain in fluctuating Parkinson’s disease patients: a post-Hoc analysis. J Parkinsons Dis 2017; 7: 95-101
  • 52 Cattaneo C, Jost WH, Bonizzoni E. Long-term efficacy of safinamide on symptoms severity and quality of life in fluctuating Parkinson’s disease patients. J Parkinsons Dis. 2019 1–9. 2020; 10 (1) 89–97
  • 53 Ferreira JJ, Lees A, Rocha JF. et al. Opicapon as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: A randomised, double-blind, controlled trial. Lancet Neurol 2016; 15: 154-165
  • 54 Muller T, Erdmann C, Muhlack S. et al. Entacapon improves complex movement performance in patients with Parkinson’s disease. J Clin Neurosci 2007; 14: 424-428
  • 55 Müller T. Possible treatment concepts for the Levodopa-related Hyperhomocysteinemia. Cardiovasc Psychiatry Neurol 2009; 2009: 1-5
  • 56 Müller T. Role of homocysteine in the treatment of Parkinson’s disease. Expert Rev Neurother 2008; 8: 957-967
  • 57 Klostermann F, Jugel C, Müller T. et al. Malnutritional neuropathy under intestinal levodopa infusion. J Neural Transm 2012; 119: 369-372
  • 58 Müller T, Jugel C, Ehret R. et al. Elevation of total homocysteine levels in patients with Parkinson’s disease treated with duodenal levodopa/carbidopa gel. J Neural Transm 2011; 118: 1329-1333
  • 59 Klostermann F. Intestinal levodopa infusion and COMT inhibition – a promising link. Eur J Neurol 2012; 19: 795-796
  • 60 Grofik M, Sivák Š, Nosáľ V. et al. The influence of levodopa, Entacapon and homocysteine on prevalence of polyneuropathy in patients with Parkinson’s disease. J Neurol Sci 2018; 392: 28-31
  • 61 Andréasson M, Brodin L, Laffita-Mesa JM. et al. Correlations between methionine cycle metabolism, COMT genotype, and polyneuropathy in L-Dopa treated Parkinson’s disease: a preliminary cross-sectional study. J Parkinsons Dis 2017; 7: 619-628
  • 62 Lökk J. Treatment with levodopa can affect latent vitamin B12 and folic acid deficiency. Patients with Parkinsonism run the risk of elevated homocysteine levels. Lakartidningen 2003; 100: 2674-2677